

New scientific opportunities at BM23 and ID24 XAS beamlines

ID24/BM23 unit: J.-A. Hernandez, K.A. Lomachenko, O. Mathon A.D. Rosa, R.Torchio

R.Torchio, BM23/ID24 beamline webinar, Nov2023

BM23-ID24

ESRF-EBS at **BM23-ID24**

BM23/ID24

- Matter at extremes
 - Physics and chemistry of matter at extreme P,T
 - Warm Dense Matter
 - Synthesis of new materials
 - Materials under high pulsed magnetic field
 - Dynamic behavior of matter

Physics and chemistry of complex materials under relevant conditions

Geo and Planetary Science

- Planetary interiors
- Melting curves
- global element cycles and geodynamical processes in the deep Earth's interior

Structure of novel materials

- Batteries and fuel cells
- Nanoparticles
- Gas sensors and separators
- Drugs

In situ and operando chemistry

- Catalysis
- Synthesis
- Electrochemistry
- Photochemistry

Environmental science

- Geo-resources
- - Biogeochemical processes
 - Impact of human activity on our environment

R.Torchio, BM23/ID24 beamline webinar, Nov2023

The European Synchrotron

BM23-ID24

Two beamlines dedicated to X-ray Absorption Spectroscopy For *in situ/operando* chemistry and matter under extreme conditions (P, T, H)

BM23: ESRF GENERAL PURPOSE EXAFS BEAMLINE

A simple optical scheme dedicated to high quality EXAFS

- Available energy range: 4-75 keV
- 10¹⁰ 10⁹ ph/s
- Excellent signal-to-noise ratio over a large k-range
- Transmission and fluorescence modes
- Versatility and high automation level, robot
- μ XAS station 3x3 μ m² 5-40 KeV
- Sample environments: He cryostats, ovens, XRD
 High pressure PE cell DAC, RH-

High pressure PE cell, DAC, RH-DAC, LT-DAC Chemistry: XAS/DRIFTS/MS setup

PHYSICS AND HIGH PRESSURE

Unveiling the spin-phonon coupling in PrNiO₃ Nickelate, a promising spintronic material

From the journal: Journal of Materials Chemistry C

J.E.Rodriguez et al. 2023

The martensitic transformation in solid Kr and Xe

PHYSICAL REVIEW B

A. D. Rosa, A. Dewaele, G. Garbarino, V. Svitlyk, G. Morard, F. De Angelis, Mathon, and M. A. Bouhifd

Phys. Rev. B 105, 144103 - Published 1

CULTURAL HERITAGE AND PALEONTOLOGY

Theropodous Teeth, Early Cretaceous (140 my) **Deposit of Angeac-Charente (France)**

- Proxies for *de vivo* elements (Sr) and elements acquired post-mortem (Y)
- Assess the degree of preservation of de vivo elements in bio-apatite

Unravel the transformation of cinnabar in the wall paintings of Pompeii

M. Maguregui et al.

6th Inter. Congress Chemistry for Cultural Heritage (2022)

A wide variety of Hg species. For the first time Hg₀ has been identified clearly in an historical painting.

CHEMISTRY

🔤 😳 🚺

pubs.acs.org/jacsau

SO₂ Poisoning of Cu-CHA deNO₄ Catalyst: The Most Vulnerable Cu Species Identified by X-ray Absorption Spectroscopy

Anastasia Yu. Molokova, Elisa Borfecchia, Andrea Martini, Ilia A. Pankin, Cesare Atzori, Olivier Mathon, Silvia Bordiga, Fei Wen, Peter N. R. Vennestrøm, Gloria Berlier, Ton V. W. Janssens,* and Kirill A. Lomachenko*

Cite This: JACS Au 2022, 2, 787-792

Cul and Cull species with different ligants under exposures to SO₂ using insitu XAS SO₂mostly affects the low-temperature activity of Cu-CHA catalysts

Multi-edge and multi-technique studies

M. Carosso, et al., ACS Catal. 2019, 9, 7124

XAS+DRIFTS+MS

complete characterization of the surface Pt-hydride species on Pt/Al₂O₃ catalyst under different hydrogenation/dehydrogenation conditions. Surface Pt-hydrides play a fundamental role, to maintain the activity of Pt nanoparticles.

BM23 - NEXT STEP: Installation of the new ESRF-DCM (Winter 2023/2024)

DCM with a new technology: stability not only based on mechanics but also on real-time feedback loops

Development of a new DCM for spectroscopy by the ESRF with

- Continuous acquisition mode as default mode
- Perform full EXAFS spectra at the Hz level
- Unprecedented energy stability (<2 meV)
- Unprecedented beam position stability ($\Delta R_v = 10 \text{ nrad rms}$)

R.Torchio, BM23/ID24 beamline webinar, Nov2023

BM23-ID24

Two beamlines dedicated to X-ray Absorption Spectroscopy For *in situ/operando* chemistry and matter under extreme conditions (P, T, H)

ID24: HIGH BRILLIANCE X-RAY ABSORPTION SPECTROSCOPY BEAMLINE

ID24: HIGH BRILLIANCE X-RAY ABSORPTION SPECTROSCOPY BEAMLINE

- LH-DAC setup for static compression
- MicroEXAFS/MicroXES setup
- 5 crystal analyser
- Operando chemistry facilities

two complementary beamlines

R.Torchio, BM23/ID24 beamline webinar, Nov2023

- High Power Laser Facility
- Pulsed Magnetic Field (P,T)

ESRF

The European Synchrotron

• Stopped Flow Cell

ID24-DCM

ID24-DCM – SUBMICRON BEAM FOR ULTRA HIGH STATIC PRESSURE

12

normalized xµ(E)

04

0.2

cea Dewaele et al., Nat. Comm.(2018 EHIME UNIVERSIT F. Occelli and P. Loubeyre T. Irifune GEODYNAMICS RESEARC Fe under pressure Fe bcc - no pressure Fe hcp - 306 GPa 7000 7100 7200 7300 7500 7600 7700 7800

7400

(eV)

Energy

R.Torchio, BM23/ID24 beamline webinar, Nov2023

DCM SAMPLE ENVIRONMENTS: LH-DAC FOR EXTREME HP HT

P/T range: 0-2 Mbars, 6000 K Time-resolution: 1 sec Multi detection: nano-XAS, XRF, XRD (XES foreseen in 2024)

A. Rosa

SAMPLE ENVIRONMENTS: 5-CRYSTAL ANALIZERS FOR ENVIROMENTAL SCIENCE

spherically bent crystals + fluorescence detector 5 positioned in a Rowland geometry

A worldwide unique setup:

- Reveals hidden fluorescence lines, improved contrast between phases
- Improved S/N ratio for XAS, sensitivity to lower concentration
- \rightarrow diluted elements in complex/natural matrixes
- E range 5 to 25 keV, E resolution 0.5 5 eV

6.05

ID24-DCM - CHEMISTRY

Pt L₃-edge EXAFS until $k = 15 \text{ A}^{-1}$ (1000 pts, 2 ms/pt) Integration time **2s per spectrum 10** consecutive EXAFS scans in 57 seconds

Data quality is very good, **but**:

- Dead time between scans is 3.7 seconds. To be improved: significant contribution of software
- Synchronization with the undulator to be improved: critical for fast scans

	ID24 DCM	BM23	
μΧΑδ	5-40 keV (µXES 4 - 25 keV)		
	up to 20 Å ⁻¹ , $\Delta E/E= 2.10^{-4}$, N/S= 5.10 ⁻⁵		
Smallest spot size	0.5*0.5 μm ²	3*3 μm ²	
Flux ph/s	$8*10^{11} - 2*10^{13}$	$2*10^9 - 2*10^{10}$	
Time resolution	Down to 1s/EXAFS		
XRF / XES	With spatial resolution		

BM23-ID24

Two beamlines dedicated to X-ray Absorption Spectroscopy For *in situ/operando* chemistry and matter under extreme conditions (P, T, H)

ID24-ED/HPLF

The European Synchrotron

THE HIGH POWER LASER FACILITY FOR DYNAMIC COMPRESSION

Pump-probe exp. with 1 pump and 2 probe beams ns time scale, single bunch XAS

photo of the shock event @ HPLF

WHY DYNAMIC COMPRESSION

Fundamental Physics and Chemistry

Materials and energy science

UNVEILING WARM DENSE MATTER OF 3DMETALS BY XAS

Energy (eV)

Energy - EFermi(eV)

GEO AND PLANETARY SCIENCE / MATERIALS SCIENCE

PULSED MAGNETIC FIELD

Laboratoire National des Champs Magnétiques Intenses (F. Duc, Toulouse, France)

pressure (0-3.0 GPa) and temperature (2-300 K)

1100 1120 1140 1160 1180

Energy (pixel)

1060

The

1080

multipurpose

specific

	BM23	ID24-DCM	ID24-ED
Timescale	1 s -mins	1 s	<100 ms (down to 100 ps)
Beam size	3 µm to 3 mm	0.5 µm to 1 mm	4 µm to 100 µm
Flux	up to 10 ¹⁰	up to 10 ¹³	up to 10 ¹³
Target applications	 Concentrated samples, relatively slow processes Photon-sensitive samples and processes Multipurpose, industrial experiments 	 Photon-hungry techniques Fast processes Multi-edge, multi-technique, multi-dimensional experiments extreme conditions (P/T), natural (very diluted) samples (5-crystals), chemistry 	Specific, ultra- fast experiments:Laser shocksPulsed magnetic field

Well-equipped to help in solving pressing scientific and societal challenges

CONTACTS

Olivier Mathon Unit coordinator BM23 beamline responsible

BM23 EXAFS beamline

Angelika Rosa ID24/BM23/ID15 Static High pressure

Jean-Alexis Hernandez Dynamic compression A. Manceau E. Mijiti A. Molokova D. Salusso

scientist ERC DEEP-SEE Post-Doc High Pressure Post-Doc Chemistry Post-Doc Chemistry

S. Balugani C. Bonnet PhD Student InnovaXN HPLF PhD Student

N. Sévelin-Radiguet HPLF laser engineerF. Perrin technician electronics and controlS. Pasternak technician mechanicsD. Bugnazet technician mechanics

ISDD support

- C. Clavel engineer mechanics
- F. Villar engineer mechanics HPLF
- A. Moyne engineer mechanics
- G. Berruyer engineer software
- S. Chazalette technician electronics

THANKS FOR YOUR ATTENTION

