ID03 is the new ID06-HXM, the ESRF Dark-Field X-ray microscopy beamline

C. Detlefs (ESRF), on behalf of the ID03 team: Helena Isern Raquel Rodriguez Lamas Thierry Brochard Thomas Dufrane Can Yildirim and many collaborators

What is dark field x-ray microscopy?

- How does it work?
- What can it be used for?
 Overview
 Examples

Software

ID03, the new Upgrade Beamline EBSL2

H. Simons et al. (2014). Dark-field X-ray microscopy for multiscale structural characterization. Nature Communications 6, 6098. DOI: 10.1038/ncomms7098

M. Kutsal et al. (2019). The ESRF dark-field x-ray microscope at ID06. IOP Conference Series: Materials Science and Engineering, 580, 012007. DOI: 10.1088/1757-899X/580/1/012007.

Magnified diffraction topography using a lens between sample and detector

- You take a sample and align a Bragg reflection
- You put an imaging detector in the diffracted beam
- You insert an objective lens between the sample and the detector

- Diffraction topography
- Rocking curve imaging
- X-ray microscopy

Complementary to electron microscopy (TEM, STEM)

 \rightarrow both are diffraction based full-field imaging, offering crystallographic sensitivity: phase, orientation, strain, ...

	DXFM	TEM/STEM
Spatial resolution	~150 nm 😐	~1 pm 🙂
Sample preparation	<0.5 mm thick, no polishing needed 😳	~100 nm thick, polished 😐
Strain resolution	~0.001% 🙂	~0.1% 😐
Sample environment	In-air, possibility of <i>in-situ</i> setups 😳	Vacuum, limited sample environments

• Main advantage, due to bulk samples sizes, is the capability to follow sample evolution *in-situ* during processing (temperature, electric field, mechanical strain...)

leed for Multiscale Imaging

Materials properties are determined by hierarchically organized structures

Metals

Courtesy of H. Simons

Biomaterials

Diffraction technique:

Bragg's law

$$\lambda = 2d \, \sin \theta$$

Sensitive to variations in the crystal lattice

- Phase
- Orientation of lattice planes
- d-spacing

→ Strain

- \rightarrow Defects such as dislocations
- \rightarrow Grain/domain boundaries

Measure diffracted intensity as function of <u>crystal orientation</u> and <u>scattering angle</u>

Record a microscopy image at each angle

Dark Field X-ray Microscopy

A unique microscope to image embedded structures

Key parameters:

Working energy:

- typically 15-20 keV
- option for 33 keV

Focal length of the objective ~280 mm

Resolution:

- In practice ~150 nm
- Diffraction limit ~60 nm

Multi-scale operation:

(we are still working on integrating this)

- 3DXRD for identification of grains of interest
- DCT for identification of grains of interest
- Near field camera (~1-2 µm pixel size)

$2D \rightarrow 3D$:

- Layer by layer with line beam
- Topo-tomo (in progress)

What is dark field x-ray microscopy?

- How does it work?
- What can it be used for?
 Overview
 Examples

Software

ID03, the new Upgrade Beamline EBSL2

H. Simons et al. (2014). Dark-field X-ray microscopy for multiscale structural characterization. Nature Communications 6, 6098. DOI: 10.1038/ncomms7098

M. Kutsal et al. (2019). The ESRF dark-field x-ray microscope at ID06. IOP Conference Series: Materials Science and Engineering, 580, 012007. DOI: 10.1088/1757-899X/580/1/012007.

ID03: HARD X-RAY MICROSCOPY BEAMLINE

ESRF

What is dark field x-ray microscopy?

- How does it work?
- What can it be used for?
 - Overview
 - Examples: Metallurgy

Software

ID03, the new Upgrade Beamline EBSL2

H. Simons et al. (2014). Dark-field X-ray microscopy for multiscale structural characterization. Nature Communications 6, 6098. DOI: 10.1038/ncomms7098

M. Kutsal et al. (2019). The ESRF dark-field x-ray microscope at ID06. IOP Conference Series: Materials Science and Engineering, 580, 012007. DOI: 10.1088/1757-899X/580/1/012007.

TIME RESOLVED THERMALLY DRIVEN DISLOCATION MECHANICS

Dresselhaus Marais et al. Science Advances 2021 – Yildirim et al. Rev. Sci Inst. 2020

This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

A NEW REGIME OF DISLOCATION BEHAVIOR

This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

DISLOCATIONS IN ANNEALED AL SINGLE CRYSTAL

J. Appl. Cryst. (2017). 50, 561–569c

C. Yildirim, H. Poulsen, G. Winther, C. Detlefs, P. Huang and L. Dresselhaus- Marais, Sci Reports 13, 3834 (2023).

SELF ORGANIZATION OF DISLOCATIONS INTO BOUNDARIES

C. Yildirim, H. Poulsen, G. Winther, C. Detlefs, P. Huang and L. Dresselhaus- Marais, Sci. Reports 13, 3834 (2023)

What is dark field x-ray microscopy?

- How does it work?
- What can it be used for?
 - Overview
 - **Examples: Functional Materials**

Software

ID03, the new Upgrade Beamline EBSL2

H. Simons et al. (2014). Dark-field X-ray microscopy for multiscale structural characterization. Nature Communications 6, 6098. DOI: 10.1038/ncomms7098

M. Kutsal et al. (2019). The ESRF dark-field x-ray microscope at ID06. IOP Conference Series: Materials Science and Engineering, 580, 012007. DOI: 10.1088/1757-899X/580/1/012007.

DOMAINS IN BaTiO₃

DOMAINS IN BaTiO₃

Fig. 4 | Changes to the domain topology and orientation distribution in the embedded BaTiO₃ grain during the in situ application of a unipolar electric field cycle along the <100> direction. a-d, Orientation maps (top) and diffraction intensity distributions (bottom) are shown for four points on a characteristic polarization (*P*) versus applied electric field (*E*) hysteresis curve: the initial zero-field state (a); at the coercive field, where most domain switching occurs (b); at twice the coercive field, where the induced polarization is saturated (c); and in the remanent state after the removal of the electric field altogether (d). Movies of the domain evolution as a function of field are available in the Supplementary Information.

H. Simons et al., Nature Materials 17, 815 (2018).

What is dark field x-ray microscopy?

- How does it work?
- What can it be used for?
 Overview
 Examples: Functional Materials

Software

ID03, the new Upgrade Beamline EBSL2

H. Simons et al. (2014). Dark-field X-ray microscopy for multiscale structural characterization. Nature Communications 6, 6098. DOI: 10.1038/ncomms7098

M. Kutsal et al. (2019). The ESRF dark-field x-ray microscope at ID06. IOP Conference Series: Materials Science and Engineering, 580, 012007. DOI: 10.1088/1757-899X/580/1/012007.

SOFTWARE

Data analysis softwa

- add-on to Orange -
- Widgets for all ess -
 - Data selection, -
 - **Pre-processing** -
 - Processing (CC -
 - Blind source se

What is dark field x-ray microscopy?

- How does it work?
- What can it be used for?
 Overview
 Examples: Functional Materials

Software

ID03, the new Upgrade Beamline EBSL2

H. Simons et al. (2014). Dark-field X-ray microscopy for multiscale structural characterization. Nature Communications 6, 6098. DOI: 10.1038/ncomms7098

M. Kutsal et al. (2019). The ESRF dark-field x-ray microscope at ID06. IOP Conference Series: Materials Science and Engineering, 580, 012007. DOI: 10.1088/1757-899X/580/1/012007.

ID03 replaces ID06-HXM

- Re-use the DFXM end-station from ID06-HXM
- Rebuild the beamline from the ground up
- Build new, fully optimized optics
- \rightarrow New, latest generation cryogenic undulator (CPMU)
- \rightarrow Pink beam option, x100 flux
- \rightarrow New sample goniometer optimized for topo-tomo
- \rightarrow The beamline is fully dedicated to DFXM, therefore x2 more beamtime available

November/December 2023: Radiation test

November 2023

November 2023

Michel Stepent.

