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Talk Outline

I Instabilities, and Feedback principles

Feedback requirements

II. Technical Challenges

Pickups, Kickers

Signal processing options

Gain Limits, Noise effects

III. Example Implementations

ALS, PEP-II/ et al, CESR, KEK-B

IV. Evaluating System performance and Margins

Examples from PEP-II, DAFNE, ALS and BESS

III. Summary
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Feedback Principles - General
Overview

Principle of Operation

Longitudinal - measure  - correct E

Transverse - measure ( , ) - kick in ,

Technical issues

Loop Stability? Bandwidth?

Pickup, Kicker technologies? Required output powe

Processing filter? DC removal? Saturation effects?

Noise? Diagnostics ( system and beam)?
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Harmonic Oscillators, Revisited

Equation of motion

where

Damping term  proportional to

ẋ̇ γ ẋ ω0
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0 5 10 15 20
10

−1

10
0

10
1

Frequency, kHz

M
a

g
n

itu
d

e

0 5 10 15 20
−200

−150

−100

−50

0

Frequency, kHz

P
h

a
se

, 
d

e
g

re
e

s

0 0.2 0.4 0.6 0.8 1 1.2 1.4
−6

−4

−2

0

2

4

6
x 10

4

Time, ms

A
m

p
lit

u
d

e

Impulse response



ESTABLISHED
1962

e

Normal Modes, Revisited

N coupled Oscillators,N Normal Modes

Driving term provides coupling

Broadband ( all-mode) vs. Narrowband Feedback

Time Domain vs. Frequency Domain formalism

• Pickup, Kicker signals the same

• Bandwidth Constraints identical

An all-mode frequency domain system ( with uniform
gain) is formally equivalent to a bunch-by-bunch tim
domain system - identical transfer functions
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Technical Challenges

Short interbunch Interval

• KEK-B, ALS, BESSY, PLS- 2 ns, DAFNE 2.7 ns,
PEP-II 4.2 ns

• requires wideband pickups, kickers

• sets required processing bandwidths

• Resolution - oscillation rms 0.6 picosecond

Many Bunches ( many unstable modes)

• KEK-B 5120, PEP-II 1746

• Need to compactly implement bunch by bunch filte

Ratio of Frev to Fosc

• Nyquist limit Fosc< 1/2 Frev

• Betatron Oscillations grossly undersampled

• Synchrotron oscillations typically oversampled

• low synchrotron frequency sets scale of required
filter memory

Delay-bandwidth product - implementation choices
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Filter Implementation Options

Terminology

• Time domain - bandpass bunch by bunch filters

• frequency domain - modal selection, notch at Fre
Sampling process suggests discrete time filter ( filte
generates correct output phase, limits noise, contro
saturation)

General form of IIR filter ( infinite impulse response)

General form ofFIR filter ( finite impulse response)

Analog Approach -

• N parallel mode by mode filters - or -

• FIR/IIR from analog delay ( electrical, optical
acoustic)

• Taps ( multiplication of coefficients), Summation
Digital approach

A/D at Fbunch, DSP FIR/IIR filter, D/A at Fbunch
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Baseband transfer function

Baseband Filter transfer function

( each bunch sees this control filter)

Maximum gain at Synchrotron frequency

zero DC gain

Phase tailored for proper feedback phase and loop
stability
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RF transfer function

Total RF transfer function

(superposition of all individual bunch filters)

Zero gain at revolution harmonics

maximum gains at n*Frev +/- synchrotron frequency
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Existing/Example Feedback Systems

DESY - Kohaupt et al. ( transverse and longitudinal

• 96 ns bunch spacing - 70 bunches - 3 tap digital F

UVSOR ( Japan) - Kasuga et al. (longitudinal)

• 16 bunches - 16 analog filters with multiplexing

NSLS - Galayda, et al ( transverse)

• 2 tap analog FIR (“correlator filter”)

CESR - Billing, et al ( transverse and longitudinal)

• 16 ns bunch spacing, digital FIR filter

ALS - Barry, et al ( transverse)

• 2 ns bunch spacing -2 tap analog FIR filter

• quadrature pickups, sum for phase shift

PEP-II/ALS/DAFNE - Fox, et al (longitudinal)

• 2 - 4 ns bunch spacing, 120 - 1746 bunches

• general purpose DSP processing

KEK-B - Tobiyama, et al (transverse, longitudinal)

• 2 ns spacing, 5120 bunches, 2 tap digital FIR
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ALS Transverse Feedback
Implementation

From W. Barry

Analog 2-tap FIR filter for DC orbit suppression

Quadrature processing via 2 pick-ups
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PEP-II/DAFNE/ALS

Phase Detection at 3*RF

General-Purpose DSP farm ( 40 - 80 processors)

QPSK-AM output modulator ( 9/4, 11/4 or 13/4 * RF

Kicker Structure
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Six Bunches and associated longitudinal
kicks

2 ns bunch spacing

Baseband risetime 320 ps

(2ns/div)

QPSK-AM modulation
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Kicker Implementations

Transverse-

Essentially all striplines. Length limited by bunch
spacing. Operation at baseband ( except for KEK-B
using two sets of kickers/amplifiers)

Cornell ( CESR) has clever short-circuited design to
kick counter-propagating beams. Also clever duty-
cycle modulated kicker driver, as apposed to linear
amplifier drive

Amplifiers - baseband ( 100kHz - 230 MHz)

Longitudinal - Several designs

Ceramic Gap ( UVSOR) - modest shunt impedance

Loaded (damped) Cavity - Designed by LNF-INFN,
used by DAFNE, BESSY ( KEK-B?). Easy to cool.
Needs circulator. Reasonable shunt impedance

Drift-tube structures - designed by LBL Beam
Electrodynamics Group, used by ALS, PLS, PEP-II
Useful in-band directivity. Cooling issues for ampere
currents

Operating in 1 - 1.5 GHz band. GaAs power amps ( 20
- 500 W), also TWT power stages ( 200 W)
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Beam Quality (ALS)
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Undulator Spectrum

Thanks to Tony Warwick ( ALS) for Undulator
Spectrum

680 685 690 695 700 705 710 715 720
0

1

2

3

4

5

6
x 10

−9  Undulator Spectrum − Feedback on (−),off(− −)

 Energy ( eV)

 N
o

rm
a

lis
e

d
 O

p
tic

a
l I

n
te

n
si

ty
 (

 a
rb

. 
u

n
its

)

 ALS 5th Harmonic Undulator Spectrum
 108 mA 84 bunch pattern



ESTABLISHED
1962

ng

ts

w-
ing

)

,
s

g

nd
Evolution of DSP-based Diagnostics

Original motivation - stabilize coupled-bunch instabilities

• Engineering-level system checks
• Identification of unstable eigenmodes, growth/dampi

rates at full design currents
• Beam Pseudospectra, Grow/Damp Modal Transien

Second-tier diagnostics

• Predictions of high-current unstable behavior from lo
current stable machine measurements (growth/damp
rates at design current estimated from low-current
commissioning data)

• beam instrumentation - bunch by bunch current
monitor, tune monitor, bunch power spectrum (noise
monitor

• Synchrotron tune vs. bunch number - gap transients
tune spread, Landau damping - instability threshold
for various configurations

• Longitudinal impedance vs. frequency from bunch
synchronous phases

• Eigenstructures of uneven fills, phase space trackin
• Transverse Motion via DSP Data Recorder/Control
Techniques used at ALS, SPEAR, DAFNE, PEP-II, PLS a
BESSY
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PLS Grow/Damp
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Harmonic Cavities at the ALS and
Longitudinal Control

The addition of 5 3*RF passive cavities has added n
HOM instabilities to the ALS, increasing growth rate
for the passively-tuned state. Additionally, the cohere
tune shifts from reactive impedances and current no
require a much wider control filter than the FIR ban
pass filter in use for five years.

Flexibility of the programmable DSP system allowed
this new control technique to be implemented as a
software change. Transient-domain diagnostics use
understand new operating requirements

0 5 10 15 20
0

10

20

30

40

50

Frequency, kHz

M
ag

ni
tu

de

Frequency responses of FIR (red) and IIR (green) filters

0 5 10 15 20
−400

−300

−200

−100

0

100

Frequency, kHz

P
ha

se
, d

eg
re

es



ESTABLISHED
1962

f

off
Movie Synopsis

SPEAR -

• 70 bunch even fill, 30 mA

• FB stabilized mode (-3) grows when FB turned of

• 24 ms total sequence
DAFNE-

• 30 bunch even fill, 100 mA

• Mode zero unstable, beam lost in machine

• 650 microsecond total sequence
ALS-

• 320 bunch fill (h=328), 95 mA

• FB stabilized mode (233) grows when FB turned 

• 7 ms total sequence
LER PEP-II Phase Space tracking

• inner circle “modes “785 - 795, outer 805-815
HER Bunch train (vertical motion) 22 ms

• 150 buckets, 4.2 ns spacing

• FB stabilized train grows when FB turned off
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Summary

Multi-bunch instability control-

Problem can be addressed withimpedance control,
carefulcavity tuning, deliberatemodulation of filling
patterns, and/or active feedback

• Design choices - all-mode vs. selected modes

• difference between damped HOM structures ( e.g
bands of unstable modes) and narrowband HOM
structures

• Technology choices - processing approaches

• Issues of injected noise, required output power

Recent developments -

Longitudinal control of machines with harmonic
cavities

• ALS experience - new IIR control techniques

Strategy of common hardware systems, software
configured systems. Development of transient-dom
machine diagnostics

Rapidly developing DSP technology suggests poten
future applications ( Elettra/SLS work in progress)
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