

Crystal structure of human Leukotriene C4 synthase – an integral membrane protein in the synthesis of inflammatory mediators

Pär Nordlund

Division of Biophysics and
Structural Genomics Consortium,
Department of Medical Biochemistry and Biophysics,
Karolinska Institutet

Integral membrane protein (IMP) structural biology

Urgent need for IMP structures

- Understanding of many membrane protein processes still rudimentary due to lack of structural information
- Integral membrane proteins of outstanding importance as drug targets.

Current state

- Less then 120 unique IMPs structures determined, majority from prokaryots
- Current rate, 5-10 novel alpha-IMP structures per year
- Only ~ 5 eukaryotic IMPs structures from recombinant protein
- Jan 2007: only one human IMP structure, an aquaporin electron diffraction structure at 3.7 Å

Membrane Protein Structural Biology Projects at the Karolinska Institute

Membran protein technologies and structures:

Gustafsson fundation (2002-2005)

SPINE (EU) (2001-2005)

Karolinska Institute (2005=>)

E-MEP (EU) (2004=>)

ECOISANOX (EU) (2005=>)

- => 2-5.5 people
- Technologies for parallel IMP production
- 2 novel membrane protein structures in last two years

Dept. of Medical Biochemistry and Biophysics

Divisions of; Biophysics, Structural biology and Structural Genomics Consortium (SGC); (PIs: Pär Nordlund, Said Eshaghi, Gunter Schneider, Ylva Lindqvist, Doreen Dobritzsch and Johan Weigelt)

The "Stockholm platform": Enabling Parallel Technologies for Protein Production for Structural Studies

(1) Expression screening

 Parallel and semi-automated expression screening, solubilization and affinity purification

- 5) Directed evolution of "protein expression and stability".
- e.g. GFP or FIDO based screening of expressibility, stability and solubility

(2) Parallel Scale-up in the 1 Litre multifermentor Greta

Parallel processes applied on:

Soluble proteins:

-E.coli, Herpes and Human

Integral membrane proteins:

- E.coli, T. Maritima and Human

(3) Purification

Streamlined ÄKTA-based multi-step purification and scouting

(4) Biophysical checkpoint CD, MS, Thermoflour for constuct and additional constants.

Crystailization automated Screening

Tentative success rates for expression and purification of IMPs (small-scale)

E.Coli - single expression conditon - His-tagged proteins

Homologouse expression:

E.coli IMPs from 30+ families (#48) >50%

Heterologouse expression (Obs, in different vectors)

- Thermotoga maritima IMPs (#168) >20%

- **Human** IMPs (#485) >17%

⇒ Typical >2/3 of these proteins can be scaled-up for crystallization trial

Current focus in group on ~15 structural families

(Eshaghi Prot Science, 2005)

Directed evolution - Selection of mutations which improve levels of detergent purifable IMPs

- Accumulated data on mutations improving expression/detergent solubilisation will eventually give knowledge base of useful mutational strategies

- <= Detergent adapted CoFi-blots of libraries of random mutated IMP ORFs
- <= Scale-up purification of selected mutant vs. non-mutated IMP.

Time-Line for our two structures

CorA

- September 2005
 - 168 TM clones screened
 - First crystals of CorA diffract to ~10 Å
- October 2005:
 - Optimization of crystals to under 4-5 Å
- December 2005:
 - Complete data set at 2.9 Å
 - A low resolution structure at 3.9 Å was determined by SGC Toronto, now published in Nature.
 - Structure solved at 2.9 Å by MR using the Toronto 3.9 Å structure

• LTC_4S

- September 2006
 - Protein expressed in Pichia
 - Purification including His-tag, ligand affinity step & GF
 - Detergent optimization using small scale-platform
- October 2006
 - Crystallize in several conditions
 - Full data set of apo-protein at 2.0 Å
- November 2006
 - Structure solved with heavy atoms (2.0 Å / 2.2 Å)

CorA divalent Metal transporter

Pentamer

TM-domain Helix 7 **N-terminal** domain

Conserved YGMN-motif

Monomer

Eshaghi et al, Science July 2006

CorA M²⁺ transporter at 2.9Å

Polar environment may assist in dehydration/rehydration of divalent cations

Nature, Aug 2, 2007

Structural basis for synthesis of inflammatory mediators by human leukotriene C₄ synthase

Daniel Martinez Molina^{1,4}, Anders Wetterholm², Andreas Kohl¹, Andrew A. McCarthy⁵, Damian Niegowski^{1,4}, Eva Ohlson², Tove Hammarberg², Said Eshaghi¹, Jesper Z. Haeggström² & Pär Nordlund^{1,3}

Arachedonic Acid signaling

Leukotriene C4 synthase

Pathways produce inflammatory and regulatory mediators involved in a wide range of physiological and pathophysiological responses.

Synthesis of Leukotriene Cysteinyls

Receptor antagonists promising therapeutics for asthma therapies (e.g. montelukast) Inflammation and Asthma responses mediated by e.g. cysLT1 and cysLT2 receptors.

Leukotriene C4 synthase

- Member of the MAPEG family (Membrane Associated Proteins in Eicosanoid and Glutathione metabolism)
- Located in the outer nuclear membrane and peripheral endoplasmic reticulum
- Leukotriene C4 synthesis is potential spatially coordinated

Structure determination of LTC synthase -- MeP

- Rat and Human LTC4S expressed in *Pichia pastoris*
- Purified using His and GSH affinity columns, plus GF
- Crystals from rat construct diffracted to 6 Å at best
- Large difference in diffraction between detergents DDM best
- Crystals from new human construct optimized (<2.0 Å)

Leukotriene C4 synthase

- Structure determined using MAD on Pt derivative
- Glutathione (GSH) soaked crystals diffract to 2.2 Å
- Space group F23 (196)
- > 1000 crystals screened for native, HA derivatives and GSH complexes; at ESRF, BESSY, SLS, and MaxLab

Structure of LTC4-synthase

Monomer (150aa)

Trimer

Aliphatic chains of detergents/lipids TMP

Detergent-lipid binding

Identity of most aliphatic chains unknown

Lipids found in central cavity

The active site

- AS located between two subunits
- 3 active sites/trimer
- Cytosolic "entrance"
- Glutathione cavity is covered by DDM molecule

Glutatione binding site

- GSH binds in horseshoe shaped conformation
- Most GSH binding residues conserved
- Arg 104 well positioned to activate SH of GSH
- GSH might be a thiolate in the crystal

GSH v.s. "Apo" structures

- SO₄ bound in "apo-LTC4S structure"
- Polar residues change conformation upon GSH binding.
- Only small conformational changes of aromatics
- Loop 1 restrained by crystal contact

Substrate recognition The active site - Summary

Specificity for LTA4

- -The head group
- -Length of aliphatic chain
- -The kinks
- A "molecular ruler"

Less conservation among residues lining the LTA4 binding crevice than those coordinating GSH in MAPEG family

Reaction senario of LTC4 synthase Mep

Crystal interactions

- 20% protein contents in the crystal
- His-tag metal cluster make key interaction
- Additional crystal contacts by the C-terminal helix and the cytosolic hydrophilic surface

LTC4S His-tag cluster

- 322 symmetry
- 12 times 6xHis tags
- 4 out of 6 His coordinate
- 8 metals (presumingly Ni)

cont. LTC4S His-tag cluster

Each His-tag form:

- one "intra trimer center" (red)
- one "inter trimer center" (green)

A (relative beginners) perspective on strategies for IMP structural biology

- Feasibility for recombinant IMP production is OK, but strategies to generate more variants still needed
- Efficient and generic (small-scale) method for protein characterization and stabilisation need.
- Extended strategies for protein surface (crystal contact) engineering need
- Availability of appropriate synchrotron stations of outstanding importance
- A component of the slow progress on IMPs might be the "Himalaya factor" – leading to less funding in the field

Acknowledgements

Division of Biophysics Karolinska Institutet

- Said Eshaghi
- Andreas Kohl
- Damian Niegowski
- Tobias Cornvik
- Pär Nordlund

EMBL Grenoble

- Andrew McCarthy

Division of Chemistry I Karolinska Institutet

- Anders Wetterholm
- Jesper Z. Haeggström

Synchrotron data collection:

ESRF, Grenoble (ID14, 23 and 29)

BESSY, Berlin (ID14)

SLS, Villingen, (X06SA)

MaxLab, Lund (ID7-11)

The Membrane Protein Team

Marie Hedren

Said Eshaghi

Mol Biol => Proteins => Structure

Daniel M. Molina

Marina I. Sabet

Andreas Kohl

Damian Niegowski

Also; Victoria Liu Tobias Cornvik

Special thanks to: Scott Lesley GNF/JCSG, San Diego:

Thank you for your attention!

Postdoc positions available: Contact Pär Nordlund (Par.Nordlund@mbb.ki.se)