

ESLS RF Meeting, ESRF Grenoble, 5 October 2011 André Roth, PhD student

PHYSICS AT THE
TERA
SCALE
Helmholtz Alliance

Institute of Physics, University of Bonn

Multibunch Feedback Systems at ELSA

ELSA operating mode & beam current upgrade

Setup of multibunch feedback systems (FB)

Commissioning of longitudinal FB

Status & outlook

(1.2 – 3.2) GeV polarized e⁻ beam for fixed-target experiments

ELSA booster mode

4 GeV/s fast energy ramp:

0.3 (0.5) s for 1.2 GeV to 2.4 (3.2) GeV

Beam accumulation in stretcher ring:

up to (15 - 20) mA without filling gap

At experiments:

External duty cycle: ≤ 80 %

Planned intensity upgrade: $I_{ELSA} = (100 - 200) \text{ mA}$

Operation different from Synchrotron Light Sources, but: same problems with beam instabilities!

Multibunch instabilities

Limitation of storable beam current and beam quality

Many harmful HOMs of 2 installed five-cell 500 MHz PETRA cavities: longit. coupled-bunch mode 252 observed above 15 mA

- Instabilities (transversal) driven by:
 - vacuum chamber: resistive wall, discontinuities
 - residual gas: ions

Counteractions:

- Temperature stabilization system for cooling circuit of PETRA cavities
- Active damping of instabilities: bunch-by-bunch feedback system

Bunch-by-bunch feedback systems analog bandwidth: $f_{RF}/2 = 250 \text{ MHz}$

- 1. Detection of displacement of each bunch via Σ & Δ -BPM signals
- 2. Front-end: Phase (longitudinal) & amplitude (transversal) demodulation via mixing with 3rd RF harmonic
- 3. Digital signal processing at 500 MHz: Bunch-by-bunch digital bandpass filter at f_{syn} , f_{β}
- 4. Longitudinal back-end: upconversion to 1 GHz
- 5. Powerful damping via broadband amplifiers & kickers, longitudinal: kicker cavity, transversal: stripline kicker

System layout at ELSA

Electronics is commercially available: DIMTEL

- front-/back-end: 3 wideband RF channels
- 3 DSP units: FPGA platform, 12-bit ADC, FIR filter (≤ 32 taps), 14-bit DAC; timing, phase adjustment, filter generation & data acquisition via EPICS

System layout at ELSA

Electronics is commercially available: DIMTEL

- front-/back-end: 3 wideband RF channels
- 3 DSP units: FPGA platform, 12-bit ADC, FIR filter (≤ 32 taps), 14-bit DAC; timing, phase adjustment, filter generation & data acquisition via EPICS

System layout at ELSA

Broadband amplifiers

- longitudinal: (1 – 2) GHz, 200 W, Milmega

- transversal: 10 kHz - 250 MHz, 100 W, Amplifier Research

Broadband Kickers - Iongitudinal

If in the future necessary: one amplifier for each cavity

2 kicker cavities:

- 4 input & 4 output ports
- choice of $f_{cent} = 1.125 \text{ GHz}$ consider ELSA bunch length: 2 - 6 cm!

$$\frac{\lambda_{\rm cent}}{2}$$
 - 6 cm > accelerating gap of the cavity

bandwidth at least: 250 MHz: Q₁ = 4.5

Simulation with CST Microwave Studio & In-house fabrication

Kicker Cavities: Measurements

Reflection measurement with network analyzer:

f_{center} = 1.125 GHz, simulated: 1.100 GHz

bandwidth: 302 MHz, $Q_i = 3.73$

Electric field & shunt impedance via resonant bead pull measurement:

$$R_{\rm s}$$
 = (374 +/- 16) Ω

Not very large, because:

- beam pipe diameter of 10 cm
- ullet f_{cent} has to be lower than usual

Kicker - transversal

Existing kicker with horizontal & vertical striplines, driven by a 0° / 180° splitter

43 cm

Currently fabrication of a new transverse kicker with larger bandwidth: stripline length of 30 cm

Timing & closing of longitudinal feedback loop

ELSA storage mode, constant energy:

- Adjust front-end phase for phase demodulation
- ADC delay (1 2000 ps) for maximum input signal
- Via internal frequency generator (DC 250 MHz):
 excitation of one bunch with f_{syn}
- Observe response of the same bunch & optimize output delay (1-274 buckets),
 DAC delay (1 2000 ps) & back-end phase for maximum kick and isolation between bunches
- > FIR-bandpass filter at f_{syn} , $\pi/2$ phase shift required for resistive feedback, (phase energy relation in longit. phase space)

universitätbo

Bunch-by-bunch beam diagnostic & data acquisition

- ≤ 25 ms record length for later ADC data analysis
- Synchrotron oscillations:
 MEAN=0,
- RMS indicates oscillations
- Spectrum: averaged over bunch pattern
- Example:
 Oscillations because of
 injections (each 20 ms)
 in the stretcher ring

Drive-damp measurement at 2.35 GeV

10 mA stored in stretcher ring, beam is stable,

longitudinal turn-by-turn ADC data of bunch with largest oscillation amplitude

0 – 1 ms: filter phase shifted by 180°,

excitation of syn. oscillations

at 1 ms: filter coeff. set back,

FB is clearly working

Fourier spectrum of ADC data averaged over all filled buckets:

excited & damped: $f_{syn} = 86 \text{ kHz}$

Fast energy ramp & booster mode

Longitudinal FB operating range:

stretcher ring beam injection energy: 1.2 GeV & typical extraction energy: 2.35 GeV

• Shift of bunches' synchr. phase ϕ_{syn} in acceptable range: 6.6°

 f_s should be nearly constant for bandpass filtering: (87.0 +/- 1.5) kHz

- LFB works sucessfully during ELSA booster mode:
 - better injection efficiency at 1.2 GeV
 - significant lower beam loss during ramp
 - damped long. CBI, until now tested with $I_{\text{beam}} \leq 30 \text{ mA}$

Status of horizontal FB

First test in storage ring mode at 2.35 GeV, I_{beam} up to 100 mA

- LFB is active: beam becomes transverse instable
- HFB loop closed: betatron oscillations of bunches damped sucessfully

Horizontal drive-damp measurements at 50 mA

- FB shows good damping performance
- Beam becomes also instable vertical, but at that time, vertical FB was not ready for operation

Conclusion & outlook

- Setup of multibunch feedback systems for all 3 planes is completed at ELSA
- LFB loop successfully closed & FB is working well during booster mode
- > HFB & VFB is ready for detailed tests with beam in the future
- FB operation for booster mode: limit for beam current / more FB gain necessary?
- Detailed studies at the stretcher ring:
 - instabilities thresholds, grow-damp transients, coupled-bunch modes, source of instabilities
 - bunch cleaning: single bunch possible?

Thanks to my colleagues:

R. Zimmermann & N. Heurich (Kicker Cavity), M. Schedler (Stripline Kicker), W. Hillert, F. Frommberger

Thank you for your attention!

New elliptical cross pieces

Main source of long range wake fields and multibunch instabilities at ELSA

Higher Order Modes of 500 MHz PETRA cavities

Numerical simulations with CST microwave and particle studio (eigenmode & wakefield solver)

Impedances of HOMs are well above multibunch stability thresholds due to radiation damping!

Frontend signal demodulation

- 3 channel demodulation at 1.5 GHz
- Longitudinal: phase demodulation

$$\sin (3 \omega_{\rm RF} t + \varphi(t)) \cdot \sin (3 \omega_{\rm RF} t + \pi/2) \propto \varphi(t)$$

→ Transverse: amplitude demodulation

$$A(t) \sin(3\omega_{\rm RF} t) \cdot \sin(3\omega_{\rm RF} t) \propto A(t)$$

Transverse Stripline Kickers: shuntimpedance vs. frequency

general behaviour: $\sim \sin(x)/x$

Simulation

Shunt impedance / kOhm

distance of striplines: 4.5 cm geometry factor: 1

30 cm:

- zero @ 500 Mhz
- larger BW

