Off-line characterization & optimization of monochromators

Dr. Simon Alcock Senior Metrology Scientist, DLS

Off-line characterization & optimization of monochromators

Simon Alcock, John Sutter, Alex Bugnar, Hiten Patel, Ioana Nistea, Kawal Sawhney, Jon Kelly, Andy Peach, Peter Docker, Graham Duller (Diamond Light Source)

simon.alcock@diamond.ac.uk

The Problem

DCM performance is a critical issue for many synchrotron beamlines ... particularly with high power densities

- 1) Thermo-mechanical deformation of mono crystal assemblies:
 - mechanical clamping
 - localised heating by high intensity X-rays
 - contraction of dissimilar materials during cryo-cooling
 - → Strains in crystal lattice impart aberrations to diffracted X-ray beam & degrade transmitted bandwidth
- X-ray beam drift & vibration (parasitic motions & cooling)

Problems will worsen for upgraded & future light sources 🖰

Testing DCMs

Ideal solution: use synchrotron X-rays for DCM commissioning

...BUT

- Limited access to beamtime 🕾
- Difficult to decouple effect of individual components 🕾
- Build & testing over an extended period(s) → scheduling! ⊗
- During beamline construction, optics hutch unsuitable for sensitive work?

Much of the work can be performed using off-line techniques prior to synchrotron X-ray tests ©

Off-line pre-commissioning & optimisation

- Are crystals strained by clamping?
- Efficient thermal interface?
- Crystal deformation during cryo-cooling?
- Crystal deformation during X-ray beam heating?

- Do motorised stages meet specification? (range, resolution, repeatability, etc)
- Parallel / perpendicular / alignment of axes?
- Parasitic motions or long term drifts?
- Vibration induced by cooling?
- [+ Motion controls commissioning]

Section 1: Mono crystals

 Mono crystals procured from vendors & acceptance tested by DLS Optics & Metrology group

Diamond-NOM slope profiler

Bruker D8 Discover X-ray diffractometer

Bruker Contour GT-X micro-interferometer

miscut angle, rocking curve, micro-roughness, flatness, ...

DLS Optical Metrology lab

Temperature stability

<5m°C rms over ~36hrs ~1m°C rms over ~5hrs

Essential for nano-metrology!

- Class 10,000 (ISO7) cleanroom
- 100m²
- Active temperature control
- Passive environmental enclosures
- Excellent vibration stability

Optical Metrology instruments

High spatial frequency errors

Mid spatial frequency errors

Low spatial frequency errors

Atomic Force Microscope (AFM)

- Atomic defects & gratings
- Lateral scan size: up to 50μm x 50μm
- Lateral resolution: <1nm</p>
- Vertical resolution: 0.01nm

Phase shifting micro-interferometer

- 3-D micro-topography
- Lateral scan size: $50\mu m$ → 5mm (+stitching)
- − Lateral resolution: $0.1\mu m \rightarrow 9\mu m$
- Vertical resolution: 0.05nm (rms)

Fizeau interferometer

- 3-D height measurement
- Beam diameter: 150mm
- Lateral scan size: 150mm → 1800mm
- Planar & spheric accuracy: λ/100 PV

Diamond-NOM

- Slope profilometry
- Lateral scan size: 1500mm
 - Lateral resolution: <1mm
 - Repeatability <50nrad

Optimise fully assembled beamline optic!

HR mirrors (side cooling)

Internally cooled mirror

PGM mirror (side cooling)

4 x 1.2m stacked mirrors!!!

How do crystals deform when clamped?

- 1) Indirect measurement of crystal lattice (*change* in optical surface)
 - a) Diamond-NOM slope profiler
 - b) MiniFiz150 Fizeau interferometer
- 2) Direct X-ray measurement of crystal lattice
 - a) Bruker D8 Discover X-ray diffractometer
 - b) Synchrotron light at B16 Test beamline

1) Indirect measurement of crystal strain

A

Measure external surface of unclamped, unstrained crystal

B

Remeasure external surface of clamped (& strained?) crystal

B – **A** = change in external surface

> Infer that internal crystal planes have also deformed

1a) I09 DCM crystals

Jon Kelly & Simon Alcock

109 1st crystal

109 2nd crystal

Side cooled

2 x clearance holes

Bottom cooled

Indium pads or sheet?

Number & location of clamps?

Pressure?

Diamond-NOM metrology

"Bump" (~15nm high) directly above through hole

→ bolt is touching silicon crystal?

1b) A novel apparatus to investigate deformation of cryo-cooled DCM crystals

Simon Alcock, Ioana Nistea, John Sutter, Graham Duller, Peter Docker

- Versatile chamber to accommodate a variety of DCM crystal assemblies
- Back or side cryo-cooling of crystals
- High vacuum (<10⁻⁷mbar)
- Entrance & exit ports to view crystal surfaces
- Diagnostics (pressure, temperature)

LN2 container

Feedthroughs for pumps, PT100s, pressure gauges, heaters

Crystal assemblies bolted to cryo-cooled copper block

Plan view (with transparent vacuum vessel)

Side view

Heater and thermocouples

cooled crystals

diamond

18

How do crystals deform on cryo-cooling?

How do crystals deform on cryo-cooling?

Fizeau interferometry

- Fizeau interferometer provides rapid (<1min)
 measurement of 3D topography of entire crystal surface
- With care & skill, can acquire nm quality data in a remarkably noisy environment!!!
- Two crystals can be imaged simultaneously
- ~1 hour to cool to -196°C (& ~1 hour to warm up ...using my wife's hairdryer!) → several iterations per day ©
- Only provides a relative change in crystal surface (window introduces aberrations), NOT an absolute value

2a) Direct measurement of crystal strain

John Sutter, Hiten Patel November 2013

- Off-line, X-ray study of clamped DCM Si111 & 311 crystals
- Room temperature & atmospheric pressure
- Investigate: crystal shape (cuboid vs. "alligator"), clamping pressure, indium foil thickness, etc
- Measure local angle of diffraction planes at discrete positions

Bruker D8 Discover X-ray diffractometer

Cu tube (40 keV, 40 mA) + selection of optics & detectors, including: Göbel parabolic multilayer mirror, Ge (220) symmetric channel cut, NaI(TI) scintillation detector +...

Cuboid crystals

- Measure local slope of crystal planes along length of crystals
- Inclinometer used to monitor parasitic pitch / roll of translation

Curvature of diffracting planes is convex (2 & 3km)

"Alligator" crystals

- S-shape distortion
- Slope variation for "Alligator" crystals (~6urad PV) is much less than cuboid crystals (30 - 40urad PV)

2b) Direct measurement of crystal strain

John Sutter, Peter Docker, Steve Keylock, Mónica Amboage, Sofía Díaz-Moreno

November 2013

- B16 Test beamline using attenuated white beam
- Crystal clamping chamber modified for X-rays (Kapton windows)
- I20 Si111 crystals with 250 μm thick indium foil
- Clamping pressure: compressed to 20 bar, then released to 1 bar
- Low vacuum, cryo-cooling
- 18.9keV selected by crystals

Plan view of B16 set-up

B16 set-up

LN₂

Kapton window (OUT)

Huber goniometer / translations

Vacuum pump

Double-crystal topographs: diffracted beam imaged as analyzer pitch is stepped through Bragg reflection

Perfect lattice matching → uniform diffracted beam
Imperfect lattice matching → diffracted beam has bright/dark
regions that move with analyzer pitch

Crystal cryo-cooled (-190°C)

1 mm Al filtering, analyzer pitch step 0.250 millidegrees

Crystal warmed to +32°C

Note that beam is much more uniform!

Crystal was significantly strained under cryo-cooling, but relaxed when warmed

After X-ray tests, crystal alignment checked by laser: Δ roll ~1.0 mrad & Δpitch ~0.6 mrad

Section 2: DCM mechanics

- Procured DCMs had problems, particularly with vibrations
 - → liaise with suppliers to improve (I07, I13, B18, B21, etc)
 - → upgrade programme (I18 & I22 Andy Peach et al)
 - → in-house development of DCMs (109 & 123 Jon Kelly et al)
- Metrology feedback essential to understand the nature of problems & quantify effectiveness of repairs / upgrade

Precision Metrology

- Precision Metrology performed in new Precision Metrology Lab or beamline
- Autcollimators, interferometers, vibration sensors, measure:
 - Parallelism between crystals
 - Angular stability
 - Parasitic pitch & roll errors during Bragg rotation
 - Linearity, repeatability & positional errors
 - Stiffness of mechanics (gravity sagging / unbalanced)
 - Vibration spectra of major DCM components
 - Dynamic (vibration & drifts) changes during cooling
 - Diagnose errors with Motion Controls systems
 - **> |||** ...

Precision Metrology instruments

2 x "Elcomat 3000" autocollimators

Angular range ±10,000μrad Angular resolution <0.05μrad **Angular**

Laser & position detector

Lateral resolution ~1μm

Lateral displacement

🐪 "XL80" (DMI) & RLE interferometer

Linear range >10m Linear resolution ~ 10nm **Linear + Angular**

Heidenhain gauges

Linear range 25mm Accuracy ±200nm Linear (contact)

Capacitive sensors

Linear range 100's um Linear resolution <1nm Linear (non-contact)

Polytec vibration sensor

Doppler shift (1Hz to kHz)

Non-contact, vibration sensing

Polytec (Doppler shifting) vibrometer

- linear vibrations
- <1 nm resolution</p>
- 10 kHz max acquisition rate
- Reflective surface not required
- Can measure through vacuum port!

123 DCM vibrations

Jon Kelly, Hiten Patel, Alex Bugnar

Investigate vibrations at different coolant flow rates

Tapping vessel confirmed 27Hz peak (& higher harmonic at 53Hz) is natural frequency of DCM

 No significant effect on vibration spectra by adjusting cryo-cooler (20 – 60Hz)

107 DCM vibrations

Hiten Patel, Alex Bugnar

Crystal alignment vs. Bragg rotation

Improvements during I09 DCM construction

Flexure hinges replaced with thicker, stiffer version (Jon Kelly)
 → reduced parasitic hysteresis for roll & pitch angles

Improvements during 109 DCM construction

123 DCM ...during cryo-cooling!

Jon Kelly, Hiten Patel, Alex Bugnar

• During cryo-cooling, crystal parallelism changed by ~1mrad (pitch)

123 DCM ...during cryo-cooling!

Stick / slip period extends as rate of cooling falls

Summary

- 1) Characterisation & improvement of crystal clamping:
 - Indirect (interferometry / profilometry)
 - Direct (lab based X-ray source or beamline)
- 2) Precision metrology (AC, vibrometer, interferometer)
 - More reliable, accurate motions & alignment
- → Significantly improved DCM performance!!! ②
- → DLS in-house DCMs outperforming commercially available systems