What can we do with serial crystallography

at a synchrotron (?)

Gleb Bourenkov EMBL Hamburg

Collaborators

- Thomas Schneider EMBL-HH
- Florent Cipriani, Alexandre Gobbo
 Uli Zander, Josan Marquez
 - EMBL-Grenoble
- · Cornelius Gati, Henry Chapman
- CFEL-DESY
 - Lars Redecke Hamburg/Lubeck Universities

Serial crystallography on in vivo grown microcrystals using synchrotron radiation

BIOLOGY MEDICINE

Cornelius Gati, ¹² Gleb Bourenkov, ¹² Marco Klinge, ¹ Dirk Rehders, ¹ Francesco Stellato, ¹ Dominik Oberthür, ²⁴ Oleksandr Yelanov, ² Benjamin P, Sommer, ⁵⁴ Stefan Mogk, ² Michael Duszenko, ² Christian Betzel, ⁴ Thomas R. Schneider, ³⁴ Henry N. Chapman ⁵⁴ and Lars Redecke²

PETRAIII, Beamline P14

user operation 02/2013-02/2014

Beam parameters (micro-focusing mode)

@ 10 keV

· Beam size in microfocus mode

Flux

Peak dose rate

100 MGy/sec

Data Collection @P14

- The only way to exploit the full microfocus flux is to <u>continuously</u> move sample through the beam
- Vertical spindle MD3 provides the necessary dynamic mechanical precision, and sophisticated motion control
- Shutterless helical ("the 4D") scan use the full beam – helical data collection runs at the same rate as regular d.c.
- Convenient micro-crystallography tools diffraction-based sample localization etc. via MxCuBEv2, in progress Using line focus is very efficient
- For regular data collection the flux traded off for flexibility in beam definition, and stability. It matches the detector framing rate (PILATUS 6MF 25Hz)

The case for serialization

- Approximately a live-dose per rocking width of rotation is required to obtain some interpretable diffraction data
- Optical optical localization is difficult or impossible

- small crystals (<≈ 3 µm in two dimensions) represent typical example
- not determined by the crystal size alone, but by a complete set of diffraction properties, radiation sensitivity and by the sample environment

Microcystaline suspension in a standard cryo mount, MD3 OAV image

Diffraction image, exposure dose 34 MGy

Fast rastering by rotation exposures

- series of helical scans along vertical spindle axis, ± 10° to ± 60°
- horizontal translations of sample mount between line scans, pitch = beam FWHM
- flat mount aligned normal to the beam with Kappa approximately equal dose at each point
- synchronized shutterless acquisition @ detector

Small but scalable wedge of rotation data on every "random"

in-vivo grown CatB crystals

T.Brucei procatepsin B (CatB)

Spontaneously crystallizes in baculovirusinfected insect cells

Average dimensions 0.9*0.9*11 µm³ 10⁷ unit cells Concentration 5x10⁸ crystals/millilitre-¹

Structure determined previously using Serial Femtosecond Crystallography (SFX)

Redecke, L. et al. (2013) Science, 339, 227-230.

CatB data collection

Sample

- Crystalline suspension + 40% w/w glycerol
- · Sample volume 13 nl
- In total ~5000 crystals

Beam 4 x 5 um² (FWHM)

- flux of 1.2 x10¹² photons
- Energy 10.00 keV.

Data collection

- Scanned region 600x600 um
- 120 helical scans x 240 exposure
- 1 sec. 0.375° rotation, 2.5 µm translation
- 5 um translaton beween lines Dose 50 to 60 MGv 28800 frames in 8 hours

CatB data processing

2233 frames indexed by CRYSTFEL (White et al. 2012).

- 1734 frames grouped into 595 rotation wedges
- 130 wedges (557 frames) successfully integrated by XDS
 - 120 wedges retained in scaling by SCALA (C.C. to merged data >70%) 80 crystals contributed in total

Spatial distributions

CRYSTFEL hits

Final data

CatB data statistics

Structure solution

Molecular replacement

62 residues propeptide and two carbohydrate chains newly built into density

carbohydrate

Rw = 22.3% Rf = 26.4%

Why the resolution is low?

Modeling with BEST

- (Log)decay rate 0.8 Å²/MGy as in MX "on average"
 Background scattering as in CatB experimen
- Average diffraction intensity –" the same 80 crystals
 - Simulated I/Sigl vs Dose
 - our experiment
 - if beam size was 1x1 μm² FWHM
 - FEL case. hypothetical experiment with no radiation damage

More experiments

- Substantial set of test microcrystal systems exercised, data analysis in progress (Cornelius Gati, CFEL)
- · Some "real systems" tried
- Diffraction quality of microcrystals is the bottleneck
- · Sample preparation is difficult and requires many trials
- On-line data analysis is missing severely!

Extrapolations - Rapid screening @100K?

Frame rate

	ph/sec	μm²		(min)
P14 as of last Monday	5 10 ¹²	5x6	6 flux limited	70
P14 collecting all flux	2 1013	5x6	25	15

Beam size

Time to raster

0.5x0.5 mm²

Tag

Flux

Room temperature, in-situ?

Crystal Direct[™] plate scanner mounted on MD3

Cipriani, Marquez et al. (2012) "CrystalDirect: a new method for automated crystal harvesting based on laser-induced photoablation of thin films." Acts Cryst D68: 1393.

Data collection

Insulin in CrystalDirect™ plate – data collection

- Insulin in I2₁3, a = 78 Å
- Typical crystal size: 10 x 10 x 10 µm³
- 5 um beam at 5% transmission
 - 120 x 400 μm 4D scans (20° rotation, Δ = 6.7 μm
 - 50 ms per frame of 0.09° + 2 µm translation 24000 frames. 800 x 400 µm²

900 partial data sets 400 crystals Resolution 2.10 Å Completeness 100.0% Average multiplicity 180

Cubic insulin - data

Indexing ambiguity!!!

Dense microcrystalline precipitates: abnormal outgassing ?

Conclusions

- Serial synchrotron cryo-crystallography works principally
- Potentially addresses new range of weak diffractors in an old, "Massif-like" manner
- Data resolution is inferior to SFX, but less sample is used
 – complementarity is a future?
- The technique is conceptually simple and built on standard components
- Scalable we need higher flux, smaller beam, faster detectors
- · Need better, faster, on-line data analysis software
- · In-situ variant is promising

