

X-ray phase contrast zoom tomography as a tool to visualize human healthy and diabetic peripheral nerves

L.B. Dahlin^{1,2}, K.R. Rix³, V.A. Dahl⁴, A.B. Dahl⁴, J.N. Jensen⁴, P. Cloetens⁵, A. Pacureanu⁵, S. Mohseni⁶, N.O.B. Thomsen², M. Bech¹

Affiliation: ¹Lund University, Lund, Sweden; ² Skåne University Hospital, Malmö, Sweden; ³Copenhagen University, Blegdamsvej 17, 2100 Copenhagen, Denmark; ⁴Technical University of Denmark, Lyngby, Denmark; ⁵ESRF, Grenoble, France; ⁶Linköping University, Linköping, Sweden; martin.bech@med.lu.se

Zoom tomography of biopsies from human peripheral nerves

Human nerve fibers

Myelin stained black with osmium

X-ray phase contrast

Histology

Diabetes and peripheral nerve

- the sural nerve and PIN

- » Myelinated nerve
 - Axonal loss
 - Demyelination
 - Degeneration
 - > Regeneration
 - Basement membrane thickening
 - Endothelial cell proliferation
- Reduction in luminal area
 Collaboration Rayaz Malik
 Slide courtesy, Lars Dahlin

PIN biopsy method

Posterior interosseus nerve

Collaboration Niels Thomsen and Rayaz Malik

PIN biopsy

» 3-4 cm nerve biopsy

» 1-3 fascicles

Diabetic Neuropathy – nerve fiber distribution

Synchrotron Nano CT versus 3D Electron microscopy

Technique	Resolution	Field of View	Acquisition Time	Other
Synchrotron Imaging	75 nm	~150 µm	Hours	Non destructive
3D Electron microscopy	In plane: ~ 5-20 nm Slice-wise: ~ 50+ nm	Abdollahzadeh et al. 2019 ~15 x 15 x 15 μm³ Lee et al. 2019 48 x 36 x 20 μm³	Days	Destructive Artifacts in different slices Need for alignment of 2D images

Micro Tomography

Human nerves in health and disease PIN biopsy and samples

Sample holder: sample size: ~ 1 mm x 3 mm

Specimens fixed in glutaraldehyde, dehydrated, post-fixed in osmium and embedded in Epon

Experiment

X-ray phase contrast zoom tomography First look at reconstruction

X-ray phase contrast zoom tomography

Human nerve fibers from PIN

X-ray phase contrast zoom tomography

Node of Ranvier

Node of Ranvier – myelinated nerve fiber with myelin deleted

"Strange knob" – "birth of an axon"

Contour – myelinated axons
Outer surface

Regenerative clusters

Contour – myelinated axons Outer and inner surfaces

Data summary

- Hand nerve biopsies (N = 16)
- Diabetic (type I & II) vs. healthy
- Fixated and osmium stained (myelin)
- Scanned at ID16: 130 nm isotropic voxels

» Observables to quantify:

- Nodes of Ranvier
- Myelination
- Morphology

Data analysis

» Overarching clinical goals:

 Qualitative and quantitative comparison of diseased (diabetic neuropathy) vs. healthy tissue

» Sub-goal (data analysis):

- Nerve fiber characterization (explorative):
 - » Distributions of fiber shapes, sizes etc.
 - » Organizational characteristics

» Tasks:

- 1: Segmentation of myelinated tissue (axons + myelin)
- 2: Extraction of various characterization metrics and statistics

Healthy (idealized) features

- Big
- Fat
- Densely packed
- Straight
- Parallel
- Regular shape

Pathologic features?

- · Smaller?
- Less myelin?
- Less dense?
- Disorganized?
- · Irregular shaped?

Work by Hans Martin Kjer, DTU

Data segmentation

» Extraction of subvolume by circular resampling from centerline

Dahl, V. A., Trinderup, C. H., Emerson, M. J., & Dahl, A. B. (2018) Content-based Propagation of User Markings for Interactive Segmentation of Patterned Images. IEEE Transactions on Image Processing. 2018

Data segmentation

» Extraction of both inner and outer surface

Work by Hans Martin Kjer

Morphology: Axonal diameter

