Optimizing cells preparation for correlative single-cell imaging

Giulia Veronesi

CNRS/CEA/UGA laboratory of Chemistry and Biology of Metals (CBM) and European Synchrotron Radiation Facility (ESRF), Grenoble.

Single-cell imaging techniques (non-exhaustive list)

Electron Microscopy

TEM, STEM, SEM...

Ultrastructure

<u>Spatial resolution</u> < 1 nm.

→ Subcellular compartments ()

NanoSIMS

(Secondary Ion Mass Spectrometry)

Legin et al. Chem. Sci. (2014)

Nano/micro XRF imaging

ID21

ID16A, ID16B, ID21 @ESRF

Elemental composition

Resolution: 20nm to 1µm <u>Detection limit</u>: sub-ppm Optimized for <u>transition</u> <u>metals</u>

 \rightarrow Trace elements

Molecular and elemental distribution Sensitive to isotopes

Resolution: 50 nm <u>Detection limit</u>: sub-ppm, optimized for <u>light elements and</u> <u>molecular groups</u>

→ Macronutrients (proteins, lipids..)

Experimental constraints

Scientific cases

Algal remodeling in planktonic photosymbiosis

PI: Johan Decelle, Plant and Cell Physiology lab (PCV) -CNRS/UGA/INRA/CEA Grenoble.

Photosymbiosis between unicellular organisms

Free-living microalgae

Microalgae in host

Morphological reconfiguration

- Metabolic reconfiguration?
- Trace metal exchanges?
- Role of Fe (involved in photosynthesis)
- Interest in sub-cellular compartments
- Samples are "rare"
- Limited access to experimental techniques

Silver nanoparticle induced impairment of hepatocyte functions

PI: Aurélien Deniaud, Laboratory of Chemistry and Biology of Metals (CBM) - CNRS/UGA/CEA Grenoble.

Silver nanoparticles (AgNPs), used as biocides in medical devices, are toxic to hepatic cells

AgNPs enter cells and release toxic Ag⁺ ions

Ag⁺ trafficking?
Excretion?

Spheroids on chip

Development of 3D cell cultures: liver-like model

 \rightarrow thin sections \rightarrow one preparation for all techniques es \rightarrow easy-to-store samples

1. Cryo-fixation: high pressure freezing

All sample preparation performed by **Benoit Gallet**, Institut de Biologie Structurale (IBS), UGA/CNRS/CEA Grenoble.

Vitrification = transformation of water in the sample into AMORPHOUS ICE.

> High pressure (> 2000 bar) Fast cooling (~ 20 ms) No ice crystal nucleation

Cryo-fixation vs chemical fixation: L. Perrin et al JAAS (2015), 30, 2525.

2. Dehydration: freeze substitution

Freeze substitution = dehydration at low temperature by dissolving frozen water with an organic solvent.

Chemical fixatives are often used Ex: -90°C to -30°C for 5 days with Acetone + OsO_4

REVIEW: C. Quintana. Micron (1994) 25, 63. "Cryofixation, Cryosubstitution, Cryoembedding for Ultrastructural, Immunocytochemical and Microanalytical Studies "

Preserves the mobile ion content

@ ID21 E = 7.3 keV

3. Preparation: final steps

3.1 Embed in resin

- Araldite, Epoxy (from PubChem database: Epoxy resin $C_{21}H_{25}ClO_5$ $\rho=1.12$ g/cm³) ٠
- Graded resin/acetone (v/v) series, each step lasting 2 h at increased temperature. ٠

Decelle et al. (2019) Current Biology.

3.2 Prepare sections

- ~ Adjacent sections for different techniques: ٠ 60-80 nm for TEM, 300-400 nm for XRF and SEM
- One section for different techniques: Semi-thin, 100-200 nm •

3.3 Lay on Si_3N_4 membranes

200-500 nm thickness

http://www.silson.com/

OR 50 nm thickness Si_3N_4 from *OXFORD instruments* if you want to measure the same section in XRF and TEM

300 nm section. Background = resin + Si_3N_4 + Chamber

High pressure freezing and freeze substitution on algal samples. With vs without OsO_4

No Os

(1. high-pressure freezing. 2. freeze substitution with **no fixative**)

With Os

@ ID16B-NA

E = 17.5 keV

(1. high-pressure freezing. 2. freeze substitution with **1% OsO₄**)

1500

1350

1200 1050

900

750

600

450 300

150

 OsO_4 fixes tissues by cross-linking lipids. \rightarrow It provides **contrast** at the membranes in elemental imaging.

- 1. Ultrastructure preserved.
- 2. Identification of cellular compartments from XRF
- 3. Compatible with EM

Identification of subcellular compartments

High-energy setup for high sensitivity to 4d metals \rightarrow NO contrast in cells

Os staining is needed to visualize the cells.

Preparation: 1. high-pressure freezing. 2. freeze substitution with $1\% OsO_4$

@ ID16B-NA E = 26.7 keV

Collaboration with Vanessa Tardillo Suarez, ID16B.

Example of correlative microscopy

@ ID21 E = 7.3 keV Pixel size 0.5 x 0.5 μ m² Flux ~ 10¹⁰ph/s, 0.5 s/pt

SEM After SR-XRF

Symbiont vs host

<< P → metabolic control, no division. >> N → provided by the host: investment in energy acquisition.

NanoSIMS @Helmholtz Center Leipzig

Free living vs symbiotic

>> Fe → provided by the host: enhance photosynthesis. Metal-storage vacuoles.

Decelle et al. (2019) Current Biology.

@ ID16B-NA. E=17.5 keV. Pixel size 50 x 50 nm²

Conclusions

- 1. Feasibility of **multimodal approach** to single-cell imaging techniques
- 2. Sample preparation based on high-pressure freezing (cryo-fixation) and freeze-substitution (dehydration)
- 3. The **preparation** must be **adapted to the** scientific case
- 4. Information obtained: morphology, trace elements, macronutrients, trafficking, metabolism....

Acknowledgements

Contacts: giulia.veronesi@cea.fr aurelien.deniaud@cea.fr johan.decelle@univ-grenoble-alpes.fr benoit.gallet@ibs.fr **CBM Grenoble:** Aurélien Deniaud Mireille Chevallet Peggy Charbonnier Isabelle Michaud-Soret

IBS Grenoble: Benoit Gallet Christine Moriscot Juan Reyes Herrera **PCV Grenoble:** Johan Decelle Clarisse Uwizeye Denis Falconet Giovanni Finazzi

INAC Grenoble: P.H. Jouneau

THANK YOU FOR YOUR ATTENTION

Radiation damage

SEM after nano-XRF @ ID16B-NA

E = 26.7 keV, Flux ~ $2 \cdot 10^{11}$ ph/s. Pixel size 100 x 100 nm². Dwell time 500 ms/pt.