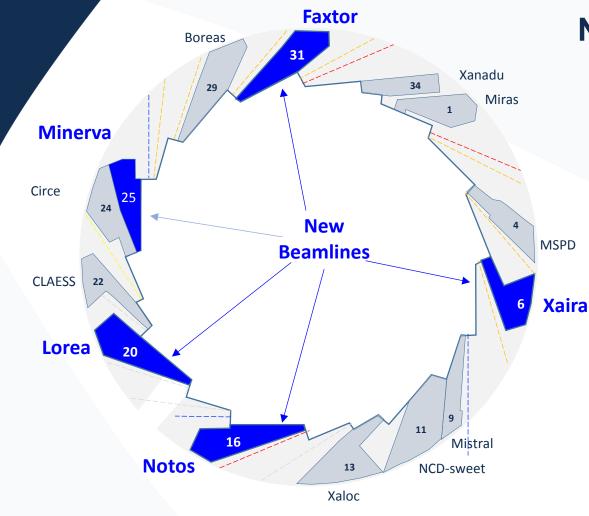

ALBA Status and Upgrade

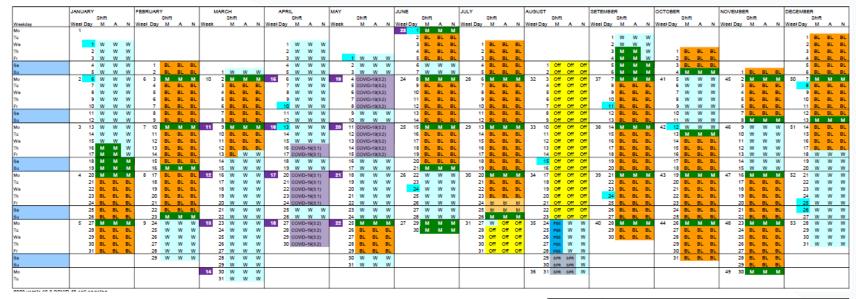
16th December 2020, 28th ESLS workshop

Ferran Fernandez, on behalf of the Accelerators team


- ALBA Status
- 2020 Operation
 - Covid impact on Operation
 - Statistics
 - Issues 👎
 - Developments 👍
- ALBA II

Parameter	Value
Energy	3 GeV
Circumference	268.8 m
Emittance	4.5 nm·rad
Current	250 mA
Rf frequency	500 MHz
# cavities	6
Long straights	4 (8 m)
Medium straights	12 (4 m)

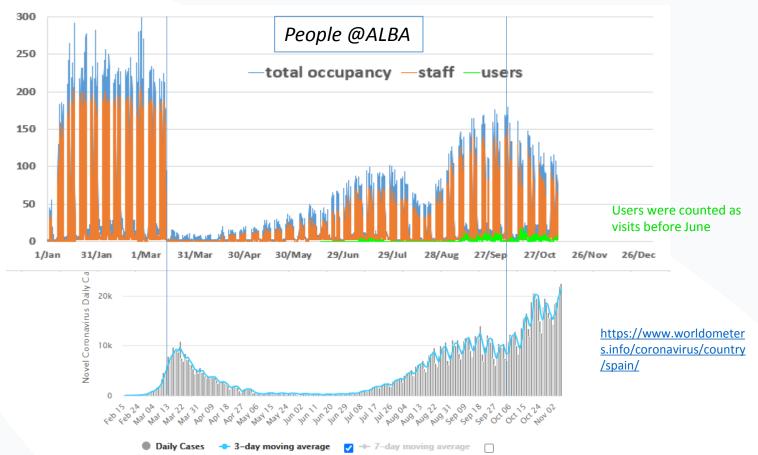
New Beamlines



ALBA is currently building/commissioning 5 new beamlines.

BL20-Lorea	ARPES
BL16-Notos	XAS-PD / metro
BL06-Xaira	microfocus MX
BL31-Faxtor	HXR tomography
BL25-Minerva	Metrology

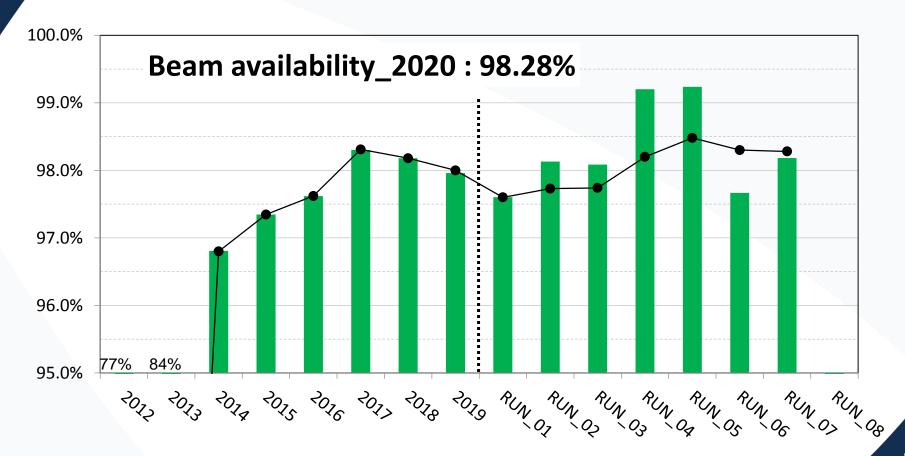
Covid19 impact on Operation



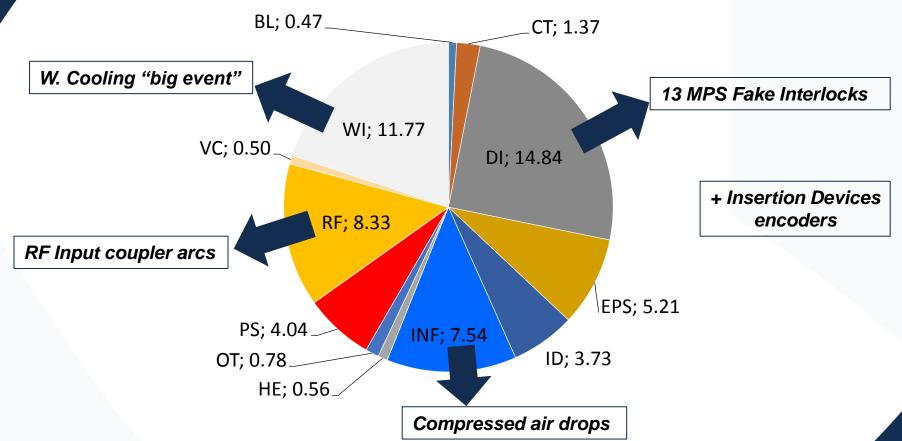
20% less than normal year

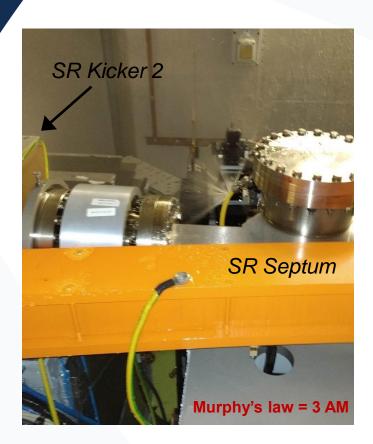
	2020, Covid	d19 Calendar
	shifts	hours
М	130	1.040
BL	467	3.736
SPR	6	48
Total	603	4.824

Covid19 impact on Operation



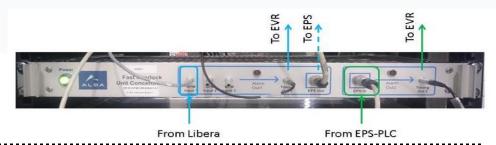
Covid19 impact on Operation

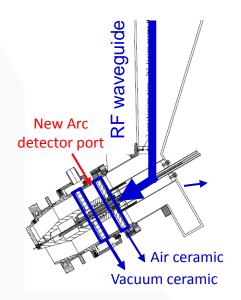

- Emergency Committee from the beginning
 - FAQs and Safety Guidelines are kept updated
- Safety means
 - Masks, cleaning, reduced occupancy at canteen,...
 - No face-to-face meetings
 - Business trips have to be authorized by the Director
 - Outreach visits are not allowed
 - Remote users whenever possible
- Working conditions
 - · More flexibility on working time
 - Teleworking encouraged whenever possible
 - Easier to have a working time reduction
 - Special treatment of vulnerable workers

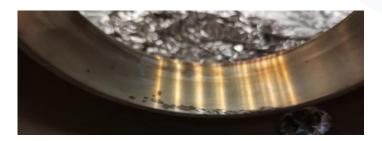

2020 Downtime hours per subsystem

2020 Operation Issues

- Cooling water hose (9h lost)
 - Injection elements had to be repaired
 - "Predictive" maintenance: exchange the rest of yellow hoses in the tunnel

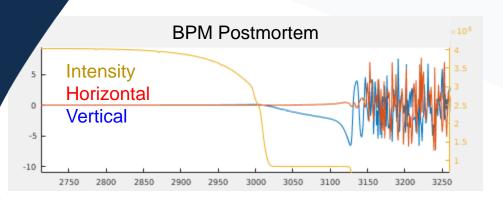



2020 Operation Issues



Interlock boards fake ITLKs

- Install ferrites + improve grounding
- Looking for a definitive solution



RF input coupler arcs

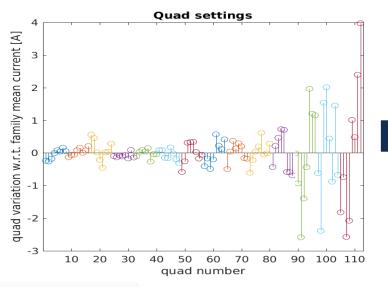
- Exchanged. Slow vacuum recovery
- Added new arc detector in a blind spot

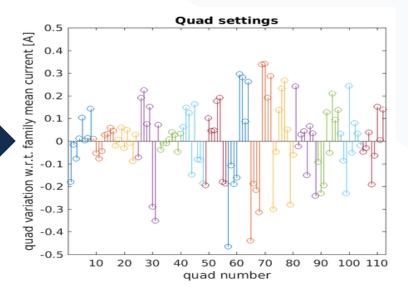
2020 Operation Issues

• Compressed air drops

- Beam lost without any apparent reason
- Fluorescent screens "hold up" with compressed air
- "Solved" -> Mechanically blocked

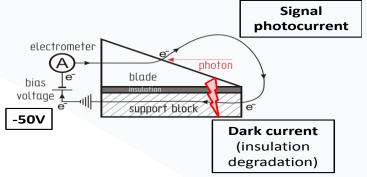
IDs encoders aging

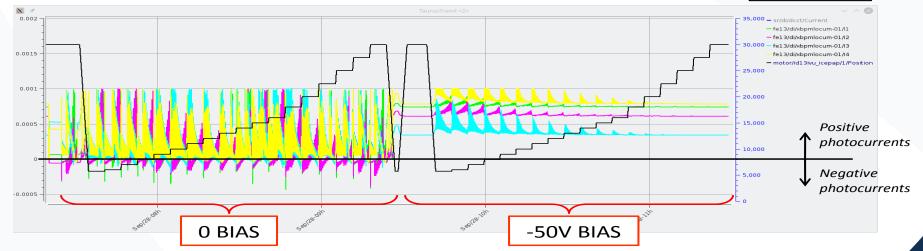

- After 10 years of operation, more than
 50% of he encoders brooked in 6 months
- The rest has been replaced


2020 Developments

Trim coils correction

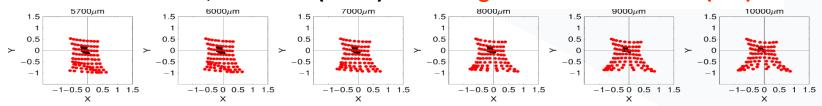
- One power supply for all dipole+quad magnets
- With LOCO we were over-using quad corrections to correct βbeating produced by the quadrupolar systematic error at these magnets
- 32 Trim coils are installed allowing local correction



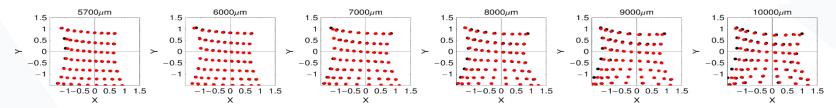

2020 Developments

XBPM without bias voltage

- XBPMs blades isolation is deteriorating
- The bias voltage, used for decoupling the blades, produce a large background signal that reduces the xBPM sensitivity.



2020 Developments

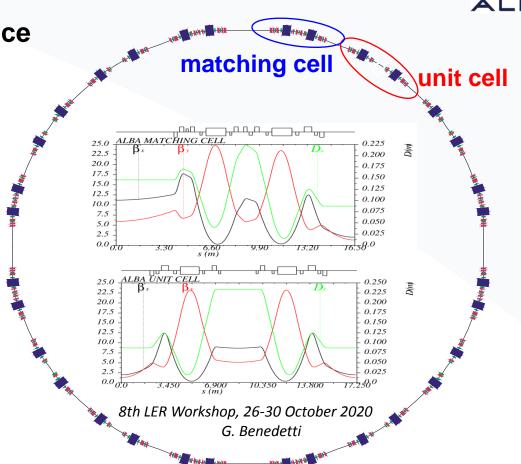


XBPM without bias voltage

Nominal BIAS, Raw data (black) and Background corrected data (red)

Zero BIAS, Raw data (black) and Background corrected data (red)

When comparing to nominal BIAS data, at zero BIAS the XBPM displays a higher sensitivity, a higher linearity and a smaller gap dependence. In addition, it does not suffers from changes in the leakage currents and is less sensitive to bending background



Present ALBA SR lattice

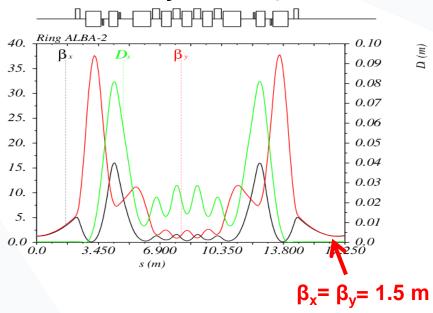
- Energy = 3 GeV
- Circumference = 268 m
- Symmetry = 4 fold
- Emittance = 4.5 nm·rad
- 8+8 DBA-like cells
- 17 m long

Straight sections:

- 12 medium straights (4.0 m)
- 4 long straights (7.8 m)
- 8 short straights (2.3 m)

Requirements

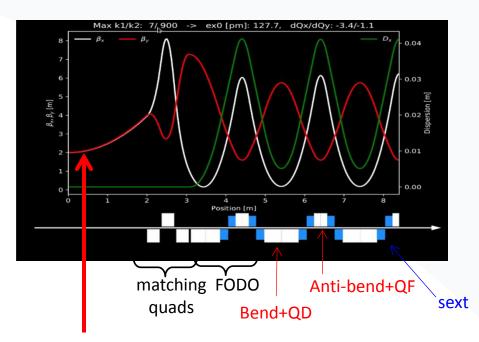
- Reduce emittance below 250 pm·rad
- Straight sections longer than 4 m
- Betas at straight section center: $\beta_x = \beta_v = 1.0-2.0 \text{ m}$
- One type of cell (instead of the present two)


G.Benedetti 8th LER Workshop, 26-30 October 2020

Constrains

- Keep beam energy 3 GeV
- Keep tunnel (SR with similar compact circumference)
- Keep existing ID beamlines (preserve 16 cells and source points)
- Keep injector (present ε_x^{booster} = 10 nm·rad)
- Keep infrastructures, as much as possible

"First study for an upgrade of the ALBA lattice", IPAC 2019


ε_x= 160 pm·rad without longitudinal gradient in bending magnets

- Following SOLEIL's IPAC2018 example, in 2019 we started testing a H7BA cell
- 16 hybrid 7BA with anti-bend identical cells → 16 straights 4.35 m
 - 7 combined gradient BENDS
 - 6 focusing QUADS (< 90 T/m)
 - 2 ANTI-BENDS: knob to minimize dispersion in BEND 2 and 6
 - 3 families of paired SEXT with "π trick" (<2000 T/m²)

Second Study: Distributed sextupole cell

- Example of half 6BA cell: ε_x= 128 pm·rad
- FODO made of transversal gradient BENDS and anti-BENDS
- Maximum gradient (< 70 T/m)
- Distributed Sextupoles (<9000 T/m²)

$$\beta_x = \beta_y = 2 \text{ m}$$

										-							-													-								
	2003	2004	2005	2006	2007	2008	2009	2010	2011	2012	2013	2014	2015	2016	2017	2018	2019	2020	2021	2022	2023	2024	2025	2026	2027	2028	2029	2030	2031	2032	2033	2034	2035	2036	2037	2038	2039	2040
ALBA	Δnn	roval																								+												
ALDA	APP	Desig																								1												
		Desig		Con	struc	tion																																
					Installa			on																														
		Commissioning																																				
						Phase II C							II Co	onsti	ructio	n																						
													P	has	e III C	onst	truct	ion																				
															, _		,	\		. , _	\																	
										Ope	ratio	n Phas	se I (7	/ BL	s) P	h II	(+2	3Ls)	Ph II	I (+5	BLs)						pq											
																									+	\dashv	period											
																							+		+	\dashv	2 V											
														٦						_							Dark											
ALBA II			_	·			••-		⊥ :		_	l:	_								roval						7											
				eı	nt	aı		<i>'e</i>	τı	m	le	lin	e						Pre l	Desi																		
			+											┵┼								tructi	on (B	3L up	or + 2	acc +	- 2 B	(2)										
		1					1	1						_		-		_			30.73	400	J., (D	- up											_			
																			Γ Ι								nsta	llatio	on 🗆									
																		Jay								-	_		on miss	onin	g							
																		Toda									_		miss		g ratio	n 16	Bls					

On behalf of the Accelerator Division...

Thanks for your attention