

SOLEIL: Status & Upgrade

Laurent S. Nadolski on behalf of the Accelerators and Engineering Division

SOLEIL 3GLS facility

- SOLEIL operational status
- Selected highlights
- CoViD-19 challenges on organization and operation

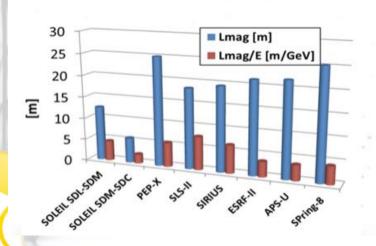
SOLEIL upgrade Status towards 4GLS

- CDR phase
- Challenges
- Tentative schedule

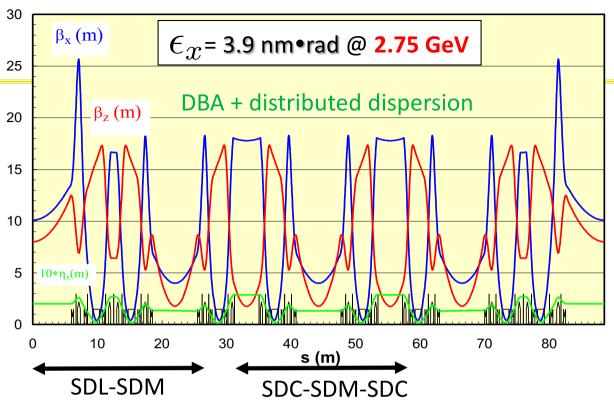
Location: France

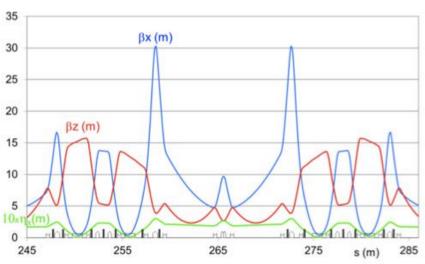
Circumference: 354 m

24 straight sections


(variable length)

SDL: 4 x 12 m

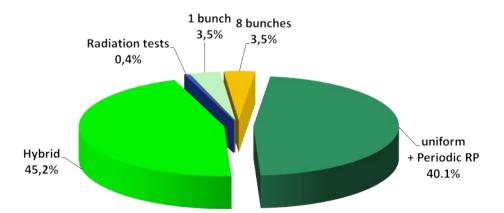

SDM: 12 x 7 m


SDC: 8 x 3.6 m

Very compact magnetic structure

28th ESLS Mee

One long straight section (SDL13, accommodating 2 canted long beamlines) has been modified


Beam Time Schedule in 2020

janv 2020	févr 2020 mars 2020	avr 2020	mai 2020 ju	uin 2020 juil 2020	août 2020	sept 2020	oct 2020	nov 2020	déc 2020	janv 2021	févr 2021
janv 2020 mer 01 jeu 02 ven 03 sam 04 dim 05 lun 06 mar 07 mer 08 jeu 09 ven 10 sam 11 dim 12 lun 13 mar 14 jeu 16 A A A A ven 17 A J Sam 18 A A A dim 19 A A A A A J J Sam 18 A A A A J Sam 18 A A A J Sam 18 A A A A B J Sam 18 A A B J Sam 18 A A B B B Sam 22 B B Sam 25 B B B B Sam 29 B B B Sam 29 B B Sam 29 B B Sam 29 B B Sam 29 B Sam	Sam 01	avr 2020 mer 01 jeu 02 ven 03 sam 04 dim 05 lun 06 mar 07 mer 08 jeu 09 ven 10 sam 11 dim 12 lun 13 mar 14 mer 15 jeu 16 ven 17 sam 18 dim 19 lun 20 mar 21 mer 22 jeu 23 ven 24 sam 25 dim 26 lun 27 mar 28 mer 29 jeu 30	Nen 01 Sam 02 Sam 02 Sam 02 Sam 03 Sam 04 Sam 05 Sam 06 Sam 07 Sam 08 Sam 09 Sam 12 Sam 14 Sam 15 Sam 16 Sam 17 Sam 23 Sam 24 Sam 25 Sam 26 Sam 27 S	11	J U sam 01 U dim 02 U lun 03 J U mer 05 TV jeu 06 J U dim 09 U un 10 U mar 11 U mer 12 U lun 10 T U mar 11 U mer 12 T V jeu 13 H un 16 H un 17 H mar 18 H mer 19 T V jeu 20 H war 23 H lun 24 J T dim 23 H lun 24 J mer 25 J T dim 24 J T dim 23 H lun 24 J J J J J J J J J J J J J J J J J J J	sept 2020 mar 01	jeu 01 U U U U V V V O 02 U U U U U U U U U U U U U U U U U U	mov 2020	Mar Mar	Janv 2021 ven 01 sam 02 dim 03 lun 04 mar 05 jeu 07 ven 08 jeu 07 ven 08 sam 09 dim 10 lun 11 mar 12 mer 13 jeu 14 ven 15 sam 16 dim 17 lun 18 sam 16 dim 17 lun 18 ar 19 mer 20 jeu 21 A ven 22 A B	Tree Tree

CoViD-19 lock-down: 7 weeks

U	Uniform					
Η	Hybrid					
8	8 bunche	es				
S	1 bunch					
L	Low-Alp	ha				
В	Beamline	es				
Cp	Periodic	rad	iatio	n sa	fety ched	cks
Tv	Radation safety validation					
A	accelera	tors	3			
	Shutdow	'n				

29 beamlines

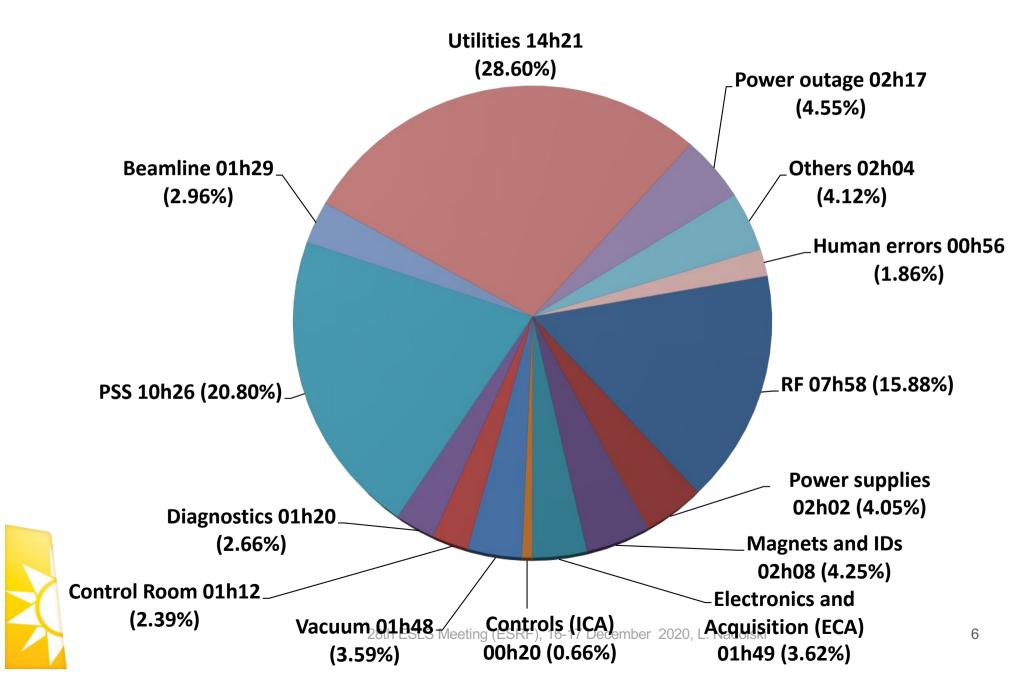
Beamline and radiation safety test (4096 hours)
Beam time according to filling patterns

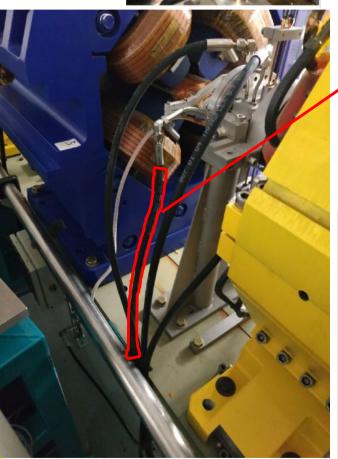
Beam availability: 98.7%


MTBF: 100h

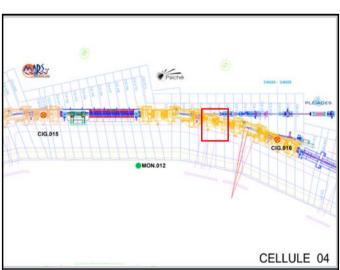
Efficiency during beamlines and radiation safety sessions in 2020 3825 hours of beamtime delivered

represent a beam availability of 98.7 %


until the 6th week of RUN 5


Origin of the 50 hours without beam in 2020

(until the 6th week of RUN 5)

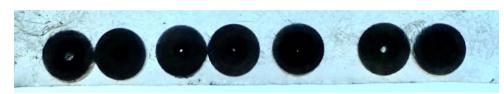


Preventive and corrective maintenance

Radiation induced aging of many water cooling hoses

Exuding water along the hose (1 drop/sec)

All hoses downstream to dipoles and located on the external side of the tunnel are to be replaced



An aging facility: increase of flowmeter faults

Clogging of waterflow reducers leading to an increase of flowmeter faults

Even with a large cleaning campaign 2 years ago for all the BPMs

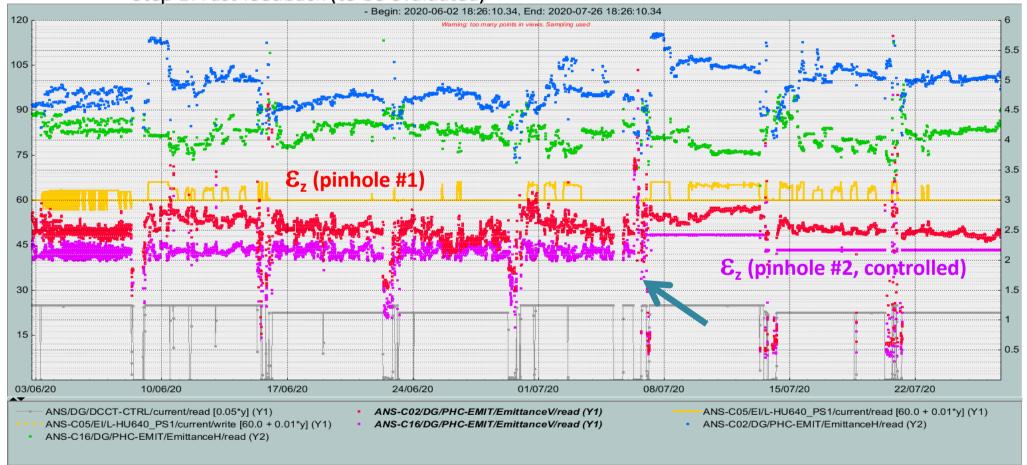
ELETTA flowmeter: retuning regularly by reaching the lower limit (radiation damage of the membrane?, calibration), need of a dedicated maintenance or partial replacement after more than 15 years of operation

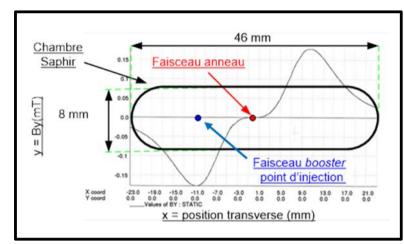
CuO deposit (black) blocking the diaphragms of the 21°C water cooling circuit

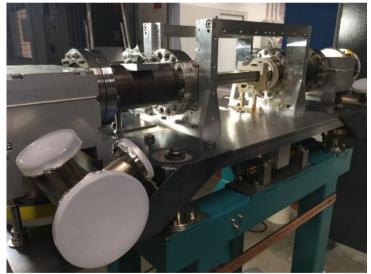
Selected Highlights

Major update since ESLS'19

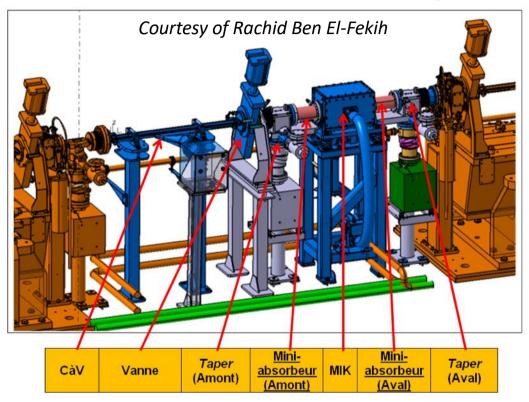
https://indico.cells.es/event/224/contributions/88 9/attachments/724/1099/ESLS2019 SOLEIL 1.pdf


- New coupling feedback with white noise
- Multipole Injection Kicker project
- Superbend project
- Photo Desorption "BeamLine"
- New set of beam loss monitors


New Beam size Feedback


- Use of noise generator at minimum of coupling (TFB processor) instead of exciting a vertical dispersion wave
 - Step 1: Slow feedback 2 Hz (in operation)
 - Step 2: Fast feedback (to be evaluated)

Installation of the MIK @ SOLEIL



Update (since ESLS 2019)

- Ti coating of Sapphire Chamber (ESRF)
- In-house magnetic measurements
- Test of new types of absorbers

Installation of the MIK in an available Short Straight Section

Same geometry as the one installed at MAX-IV https://doi.org/10.1016/j.nima.2020.164739

Installation: January 2021 (preparing the upgrade)

- Test the MIK concept on SOLEIL: efficiency, orbit perturbation.
- Test of injection schemes in the framework of the upgrade studies
- On axis Injection with Transverse kick combined with longitudinal kick with the RF

Dedicated Photo Desorption Beamline for the upgrade

Balance between Photon Stimulated Desorption yield η

& the NEG Pumping speed / saturation-capacity

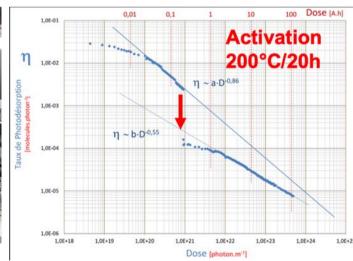
→ For 10 mm diameter chamber ←

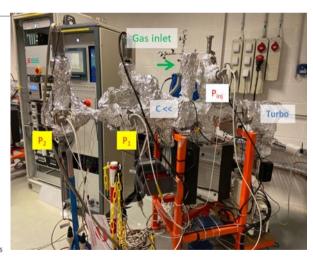
On the ring

PSD **\eta** / **Dose** of photons

- Activation NEG with SR?
- Pumping CH4?

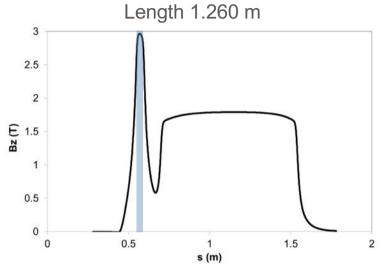
What would be the dynamic pressure and its evolution with the photon DOSE


2 TEST BENCHES @SOLEIL


In the LAB

- Intrinsic pumping speed of the NEG S^{NEG}
- Capacity/saturation

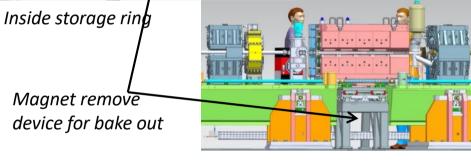
with Injection gas pure/μleak H2, CO, CO2, CH4.....


First chamber tested (63 mm diameter) Successfully during fall 2020

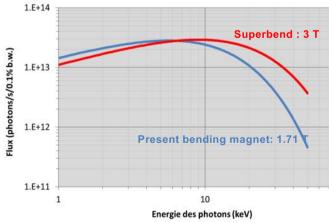
Characterization bench

3T Superbend Project (ROCK BL)

Permanent magnet dipole(NdFeB)

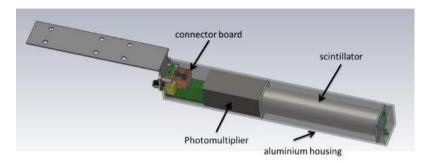


Gap **16.1 mm** B = **2.84 T** Gap **23 mm** B = **1.81 T**

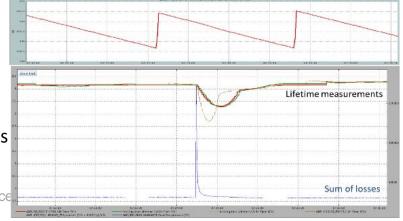

A C-shape yoke which allows the removal of the magnet for bake out

Outside the storage ring

Installation: January 2021


Calculation at 8700 mm from the source point for an opening of 13 x 2.4 mm².

Installation in August 2021



- Average data (13 Hz)
- Turn by turn (injection)
- Fast measurement

Upgrade: radiation safety

Measurements vs FLUKA simulations for qualifying the shielding walls

28th ESLS Meeting (ESRF), 16-17 Dece

CoViD-19 impact

Coordination and organization

- Crisis Meeting once a week
- Heavy work (safety, communication, crisis cell) to produce adequate documentation, safety and training sheet, answering questions...
 - On-line training for all the staff & making the working environment safe
 - Psychosocial risk (PSR), etc.
- Maintaining the link with the employees: a newsletter « Informations Confinées ».
- Facility Shutdown (national lock-down) for 7 weeks (16 March 11 May)
- 11 May: going back progressively to work (4-5 main phases)
 - Phase 0 (May 11th June 22nd): operation with highest priority.
 - **Phase I** (June 22nd July 6th): ~50 % of technical staff on site. Everybody has to come back at least once. Authorization still necessary to enter the site.
 - **Phase II** (June 22nd July 6th): staff at least present 2 days a week. Number of people in a room only limited by the 4m² rule, or mask.
 - Phase III (from August 31st): Max of 2 days home office per week.
 - **Phase IV** (from October 30th): 2nd lock down. Almost normal operation. Teleworking is the rule when possible. A few cancellations (Users).

Supporting the economic activity

- From June 2nd, service provider back on site
- · Corporate restaurant, guest House, etc.

Remote Access

- Allowing a maximum number of people to telework
 - Generalization of remote Access to the Accelerators
- Rescaling of IT architectures and purchasing VPN, Microsoft TEAMS, etc. licenses.
- Adaptation of workplaces
- Creation of a task force for remote access of the beamlines (29 BL working, 5 CoViD BLs, 1/3 Mail-In, 1/3 partial or total remote access)

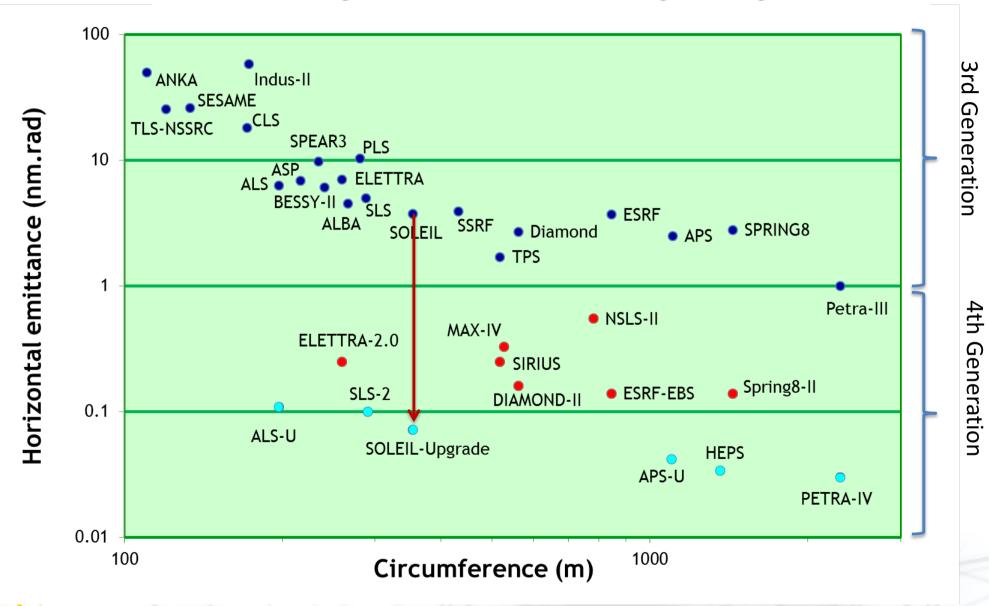
Safer Control Room Limited access +

Second Control Room

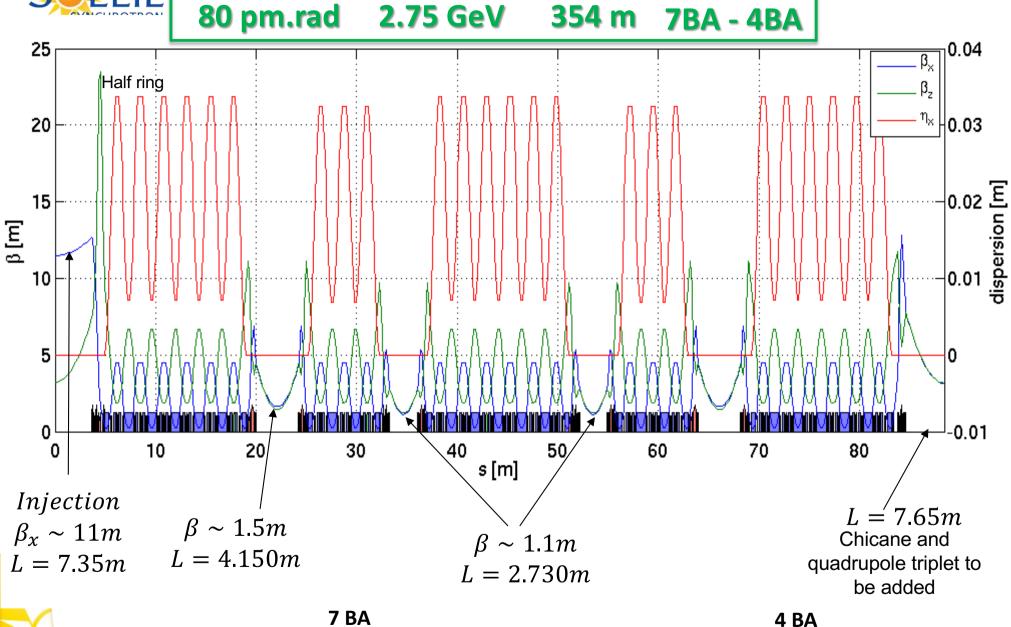
ki

SOLEIL Upgrade News and Status

Reference:


R. Nagaoka, SOLEIL Upgrade, 8th Low Emittance Rings Workshop LER2020, INFN-LNF, Frascati, Italy, 26-30 October 2020

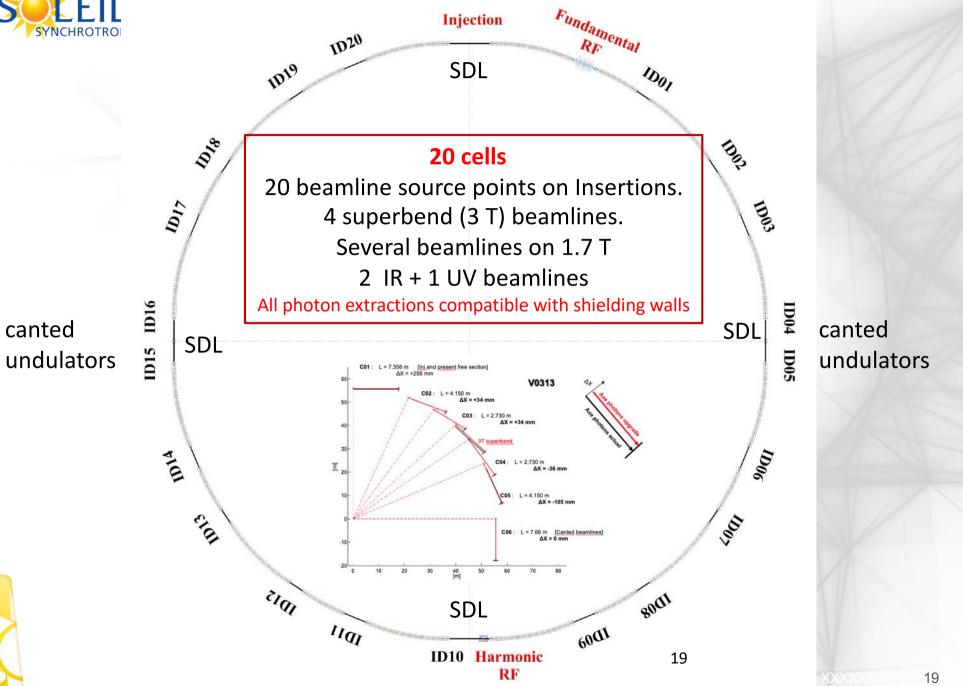
https://agenda.infn.it/event/20813/contributions/110195/attachments/76445/98315/SOLEILupgrade LER2020.pdf

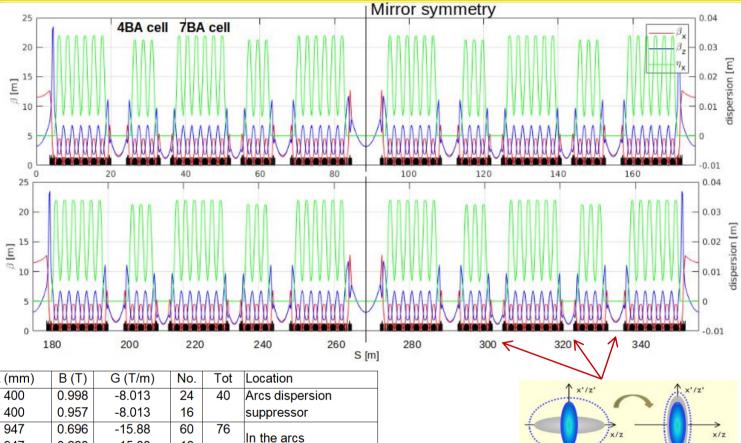


Emittance comparison for 3rd and 4th Generation Light Sources on Storage Ring



CDR Lattice Reference (V0313)




General Layout

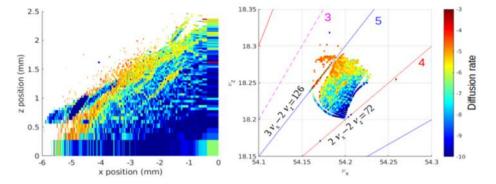
Present CDR reference lattice [1/3]

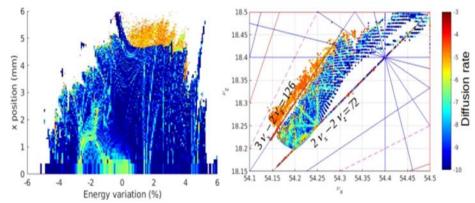
Entire layout of the CDR lattice: "HOA 7BA-4BA symmetry 2"

	L (mm)	R(1)	G (1/m)	No.	lot	Location
Short bend 7BA cell	400	0.998	-8.013	24	40	Arcs dispersion
4BA cell	400	0.957	-8.013	16		suppressor
Long bend 7BA cell	947	0.696	-15.88	60	76	In the arcs
4BA cell	947	0.668	-15.88	16		in the arcs
Rev bend 1 7BA cell	200	-0.210	56.34	120	152	In the arcs
4BA cell	200	-0.201	56.34	32		in the arcs
Rev bend 2 7BA cell	200	-0.178	57.79	24	40	Arcs dispersion
4BA cell	200	-0.171	57.79	16		suppressor
Quadrupoles [B']	Various	-	≤ 110	144	144	Quadruplet in the
Quadrupoles [b]						straights
Sextupoles [1/2 B"]	60/80/110	-	8000 T/m ^{2*}	368	368	Both arcs and straights
H&V correctors	00/60/110		8000 17111-	300	300	Combined magnet
Octupoles [1/6 B""]	50		3.10 ⁵ T/m ^{3*}	176	176	Both arcs and straights
Q correctors	30		3.10-1/111-	170	170	Combined magnet
Total					996	

Main characteristics of the magnets used for the CDR lattice

- Permanent magnets for dipoles and reverse bends
- Need of **strong** sextupoles and octupoles




Present CDR reference lattice [2/3]

Lattice		CDR lattice upgrade	Current lattice
Symmetry		2	1
Energy	[GeV]	2.75	2.75
Circumference	[m]	353.74	354.10
Straight ratio	[%]	24	46
Number of straight secs		20	24
RMS Natural H. emittance	[pm.rad]	81	4000
RMS Coupled H&V Emittance	[pm.rad]	53	
RMS Energy spread	[%]	0.09	0.10
RMS Natural Bunch length	[ps]	9.182	15.17
	[mm]	2.7	
Harmonic number		416	416
Main RF frequency	[MHz]	352.56	352.20
Energy loss per turn W/o ID	[keV]	490	917
RF Voltage	[MV]	1.38	2.9
Momentum compaction factor	[-]	9.12E-05	4.4E-04
Synchrotron frequency	[kHz]	1.4	4.5
	[turns]	600	190
Damping times (H/V/L)	[ms]	7.3 / 13.1 / 11.7	6.9 / 6.9 / 3.5
	[turns]	6000 / 11000 / 10000	5800 / 5800 / 2900
Nominal tunes (H/V/L)		54.2 / 18.2	18.16 / 10.22
Natural chromaticities (H/V)		-108 / -65	-53 / -19
Corrected chromaticities (H/V)		+1.6 / +1.6	+1.3 / +2.2

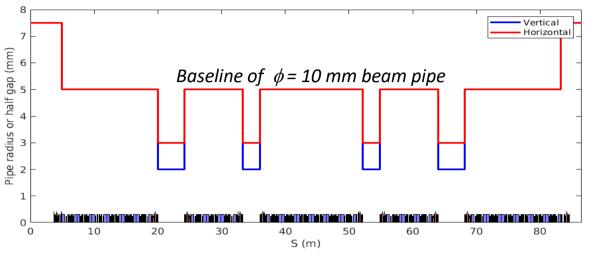
10

On-momentum Frequency Map Analysis (FMA) at injection point

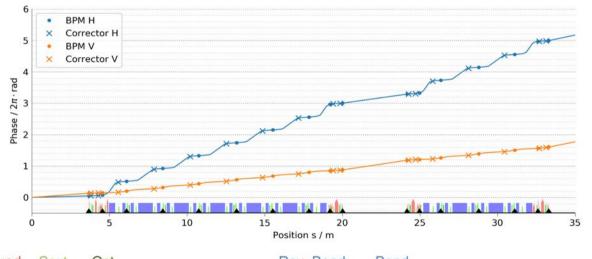
Off-momentum Frequency Map Analysis (FMA) at injection point

MYVA $\mathcal{L}_{\mathcal{M}}$ Energy Acceptance [%] MMM -6 └ 0

S [m]


Left: Local energy acceptance along ¼ ring

 $\tau_{Touschek}$ at 500 mA: ~3.5 hours 100% coupling ~1.5 hours 10% coupling w/o bunch lengthening

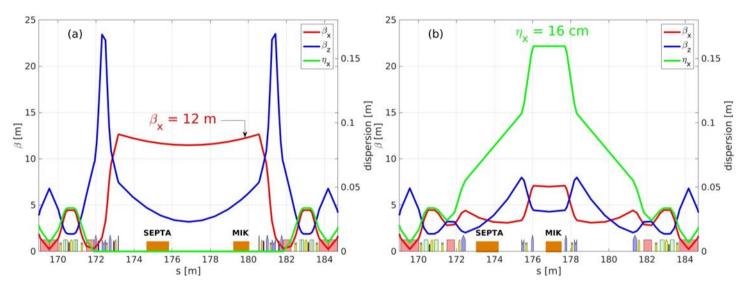


Present CDR reference lattice [3/3]

Half physical aperture along the ring including in-vacuum insertion device gaps

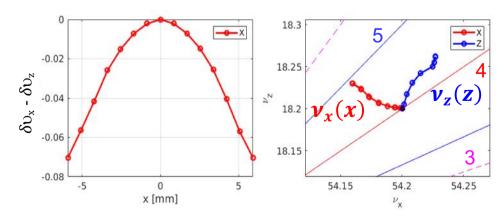
Studies of

34

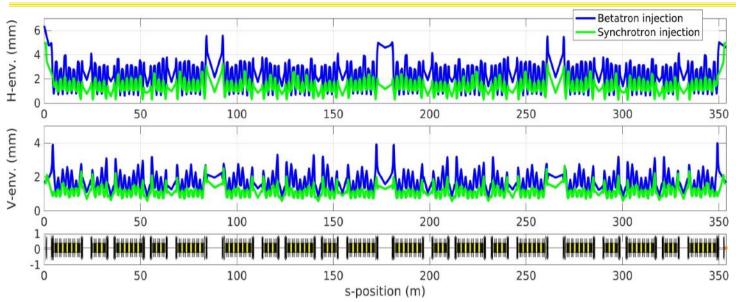

- Lattice tuning flexibility
- 1st-turn steering
- Robustness against errors

launched with specific BPMcorrectors (dipolar, normal and skew quadrupolar) configurations

Top-up Injection schemes developed [1/2]


Two injection schemes are developed and studied at SOLEIL using a MIK (Multipole Injection Kicker), with the experience of developing one which gave success at MAX-IV: "betatron off-axis" and "synchrotron on-axis" injections

- In both cases, MIK
 deflection at Δx = -3.5 mm
 from the stored beam
 location
- Injected beam at δ = -2% for synchrotron on-axis injection


Left: Horizontal beta bump for betatron off-axis injection with tunes (54.20, 18.20). **Right**: Horizontal dispersion bump for synchrotron on-axis injection with tunes (54.16, 18.16)

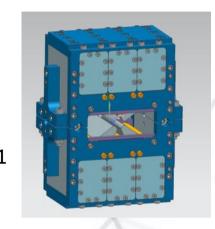
- In both schemes, beam is injected to a ring tuned to a coupling resonance and the stored beam is fully betatron coupled
- In betatron off-axis injection, nonlinear tune shifts with amplitude are adjusted to enable "dissonance" for the injected beam

Injection schemes developed [2/2]

H and V beam envelopes over 900 turns after injection for both injection schemes, w/o error at injection nor in storage ring. Ring working point is set at full coupling. (ε_H)_{ini} = 5 nm.rad, σ_L = 25 ps for betatron and 35 ps for synchrotron injections

	Positive aspects	Negative aspects
Betatron off-axis	 Allow straightforward implementation in injection straight 	Sensitivity to lattice errorsNeed of a large DA
Betation on-axis	Pulse magnets specs comfortable	 Injection beam envelops have smaller margins against ID gaps
Compahuratura an ania	Relaxed DA requirementLess sensitivity to lattice errors	• Explicit lattice modifications with a dispersion bump
Synchrotron on-axis	Reduced injection beam envelops	Need of larger off-momentum DAsMore demanding MIK specs

⇒ Both schemes to be pursued further

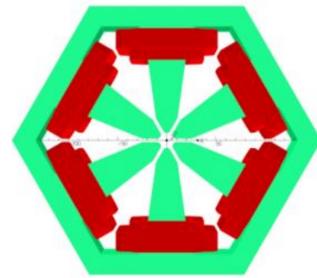

Magnet Prototypes

Quadrupole = 140 T/m (7 X today) Sextupole = 8000 T/m² (25 X today)

Extensive use of permanent magnets

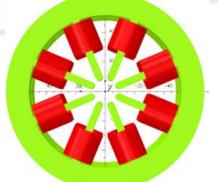
Quadrupole

- Procurements by the end of 2020
- In-house assembly by the end of 2020
- Magnetic measurements First semester of 2021



Combined dipole (Permanent magnet)

Assembly and magnetic meas.

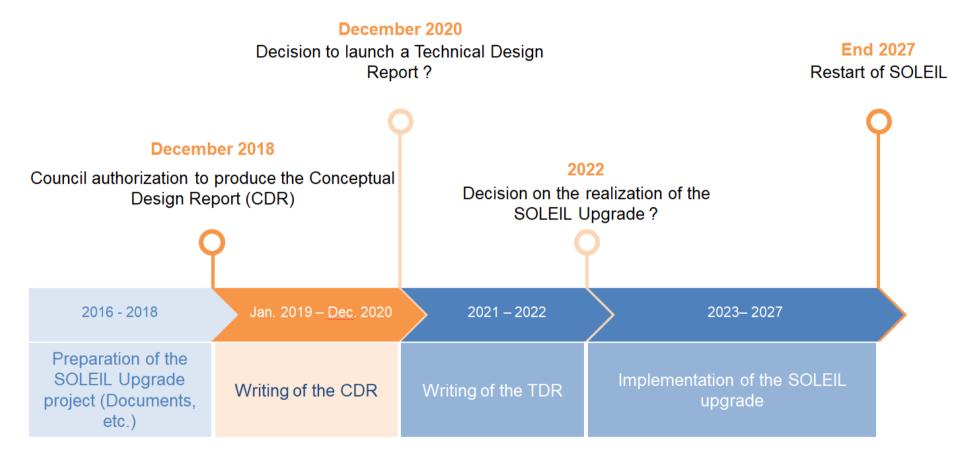

Mid 2021

Multipurpose sextupole

Assembly and magnetic meas.
 Mid 2021

Multipurpose octupole

Assembly and magnetic meas. 25
 Mid 2021


Main CDR Milestones

- 4 reviews held during the last 6 months
 - Ultra-vacuum system review (11-12 June 2020)
 - Magnet Review (2-3 July 2020)
 - Lattice and Injection Review (7-8 September 2020)
 - Girder Review (17-18 November 2020)
- SOLEIL SAC (16-17 November 2020)
- SOLEIL council (14 December 2020)
- Mini-MAC to close the CDR phase (February 2021)

Tentative Planning and Objectives

Conclusions

Despite a very special year due to CoViD-19 crisis

- Operation with extremely good performance (7 weeks operation lock-down)
- All 29 beamlines work 24/7
- Small delays concerning major projects of the accelerators

Upgrade

- Ending the CDR period:
 - a first strong lattice candidate answering major criteria (performance, impact on shielding, number of BLs)
 - A strong scientific case
- Preparing TDR phase
 - Entering prototyping phase (magnet, vacuum, girders, injection, diagnostics, RF-system, insertion devices, etc.)
 - Critical phase for the mechanical integration, extraction of the photo beams, etc.
 - Robustness and tuning capability of the lattice
 - Choice of ex/in situ backing out, NEG and pumping capacity of 6-10 mm diameter chambers
 - New Booster design
 - ...

Questions?

Acknowledgments

- A. Nadji, R. Nagaoka
- X. Delétoille, J-F. Lamarre
- Accelerator Physics Group

