Neutron production and moderation Ulli Köster, ILL koester@ill.fr # neutrons are everywhere # Bound neutrons are everywhere # Discovery of the neutron ## 1. Alpha-induced reactions: ⁹Be(α,n)¹²C +5.7 MeV | Po 208
2.898 a
α 5.1152
ε
γ (292, 571) | Po 209
102 a
α 4.881
ε
γ (895, 261
263) | Po 210
138.38 d
α 5.30438
γ (803)
σ < 0.0005 + < 0.030
σ _{0.5} 0.0°)
σ ₁ < 0 | |---|--|---| | Bi 207
31.55 a
ε, β ⁺
γ 570, 1064
1770 | Bi 208
3.68·10 ⁵ a | Bi 209
100
1.9 ·10 ¹⁹ a
a 3.077
c 0.011 + 0.023
c _{nat} < 3E-7 | | Pb 206
24.1
σ 0.027 | Pb 207
Ct 22.1
σ 0.61 | Pb 208
52.4
σ 0.00023
σ _{n,α} < 8E-6 | - 1. Alpha-induced reactions: ⁹Be(α,n)¹²C +5.7 MeV - 2. Deuteron fusion: $d(d,n)^3He +3.3 \text{ MeV}$, $t(d,n)^4He +17.6 \text{ MeV}$ - 1. Alpha-induced reactions: ⁹Be(α,n)¹²C +5.7 MeV - 2. Deuteron fusion: $d(d,n)^3He + 3.3 \text{ MeV}$, $t(d,n)^4He + 17.6 \text{ MeV}$ - 3. Photo-dissociation: ⁹Be(γ,n)2α -1.66 MeV - 1. Alpha-induced reactions: ⁹Be(α,n)¹²C +5.7 MeV - 2. Deuteron fusion: $d(d,n)^3He + 3.3 \text{ MeV}$, $t(d,n)^4He + 17.6 \text{ MeV}$ - 3. Photo-dissociation: ${}^{9}Be(\gamma,n)2\alpha$ -1.66 MeV - 4. Spontaneous fission: ²⁵²Cf(sf)¹³⁴Te+¹¹⁵Pd+3n +212 MeV | Cf 250
13.08 a
α 6.030, 5.989
sf
γ (43), e ⁻
σ 2000, σ _f 110 | Cf 251
898 a
α 5.679, 5.849
6.012
γ 177, 227
σ 2900, σ ₁ 4500 | Cf 252
2.645 a
α 6.118, 6.076
sf
γ (43), e ⁻
σ 20, σ _f 32 | |--|---|--| | Bk 249
330 d
β ⁺ 0.1
α 5.419,5.391
sf, γ(327,308)
σ 700, σ ₁ ~0.1 | Bk 250
3.217 h
β 0.7, 1.8
γ 989, 1032
1029
σ _f 1000 | Bk 251
55.6 m
B - 2.9, 1.1
y 1 8, 130
53 | | Cm 248
3.40-10 a
a 5.078, 5.035
sf, y, e . g
g 2.6, c, 0.36 | Cm 249
64.15 m
β - 0.9
γ 634 (560
364), e ⁻
-1.6 | Cm 250
~9700 a
sf
α?, β¯?
σ ~80 | - 1. Alpha-induced reactions: ⁹Be(α,n)¹²C +5.7 MeV - 2. Deuteron fusion: $d(d,n)^3He +3.3 \text{ MeV}$, $t(d,n)^4He +17.6 \text{ MeV}$ - 3. Photo-dissociation: ${}^{9}Be(\gamma,n)2\alpha$ -1.66 MeV - 4. Spontaneous fission: ²⁵²Cf(sf)¹³⁴Te+¹¹⁵Pd+3n +212 MeV - 5. Neutron-induced fission: ²³⁵U(n,f)¹³⁴Te+⁹⁹Zr+3n +185 MeV | Pu 237
45.2 d
sf
a 5.334
r 80 e
c, 2300 | Pu 238
87.74 a
sf a.5.499, 5.456
sf Sv. Mg
y (43, 100), e ⁻¹
o 510, o ₁ 17 | Pu 239 2.411·10 ⁴ a sf a 5.157, 5.144 sf y (52), e ⁻¹ m o 270, o ₁ 752 | Pu 240
6563 a
sf a 5.168, 5.124
sf
y (45), e ⁻⁷
g 290, o ₇ ~0.059 | Pu 241
14.35 a
sf p 0.02 s
u 4.896
y (149), e c
a 370, o, 1010 | |---|---|---|--|---| | Np 236
22.5 h 1.54·10 ⁵ a
4,0° 0.5 r 160
618.1 e 160
9 0,2700 e 3000 | Np 237
2.144·10 ⁶ a
sf
a.4.790, 4.774
y.29, 67—e ⁻
a.170, a ₁ 0.020 | Np 238
2.117 d
β 1.2, γ 984
1029, 1026,
924, e , g
σ _f 2600 | Np 239
2.355 d
β 0.4, 0.7
γ 106, 278
228, e , g
σ 32 + 19, σ ₁ < 1 | Np 240 7.22 m 65 m 8 22 7.555 597. 6 7.566, 974 607, 448 | | U 235
0.7204
26 m 7.038-10-2
17(0.07) a 4.398, sf
Ne. y 186
o 95, nj 586 | U 236
120 ns 2.342·10 a
14 17 83 Mg/sr 49
642 9 | U 237
6.75 d
β 0.2
γ 60, 208, e σ ~100
σ ₁ < 0.35 | THE STREET IN THE | U 239
23.5 m
β-1.2, 1.3
γ 75, 44
σ 22
σ _t 15 | - 1. Alpha-induced reactions: ⁹Be(α,n)¹²C +5.7 MeV - 2. Deuteron fusion: $d(d,n)^3He +3.3 \text{ MeV}$, $t(d,n)^4He +17.6 \text{ MeV}$ - 3. Photo-dissociation: ${}^{9}Be(\gamma,n)2\alpha$ -1.66 MeV - 4. Spontaneous fission: ²⁵²Cf(sf)¹³⁴Te+¹¹⁵Pd+3n +212 MeV - 5. Neutron-induced fission: ²³⁵U(n,f)¹³⁴Te+⁹⁹Zr+3n +185 MeV - 6. Beta-delayed n emission: ${}^{87}\text{Br}(\beta^{-}){}^{87}\text{Kr}^* \rightarrow {}^{86}\text{Kr+n} + 1.3 \text{ MeV}$ - 1. Alpha-induced reactions: ⁹Be(α,n)¹²C +5.7 MeV - 2. Deuteron fusion: $d(d,n)^3He + 3.3 \text{ MeV}$, $t(d,n)^4He + 17.6 \text{ MeV}$ - 3. Photo-dissociation: ${}^{9}\text{Be}(\gamma,n)2\alpha$ -1.66 MeV - 4. Spontaneous fission: ²⁵²Cf(sf)¹³⁴Te+¹¹⁵Pd+3n +212 MeV - 5. Neutron-induced fission: ²³⁵U(n,f)¹³⁴Te+⁹⁹Zr+3n +185 MeV - 6. Beta-delayed n emission: ${}^{87}\text{Br}(\beta^{-}){}^{87}\text{Kr}^* \rightarrow {}^{86}\text{Kr+n} + 1.3 \text{ MeV}$ - 7. Spallation: ²⁰⁸Pb(p,3p 20n)¹⁸⁵Au -173 MeV # High energy nuclear reactions # Spallation + Fragmentation + Fission W. Wlazło et al., Phys. Rev. Lett. 84 (2000) 5736. T. Enqvist et al., Nucl. Phys. A 686 (2001) 481. - 1. Alpha-induced reactions: ⁹Be(α,n)¹²C +5.7 MeV - 2. Deuteron fusion: $d(d,n)^3He + 3.3 \text{ MeV}$, $t(d,n)^4He + 17.6 \text{ MeV}$ - 3. Photo-dissociation: ${}^{9}Be(\gamma,n)2\alpha$ -1.66 MeV - 4. Spontaneous fission: ²⁵²Cf(sf)¹³⁴Te+¹¹⁵Pd+3n +212 MeV - 5. Neutron-induced fission: ²³⁵U(n,f)¹³⁴Te+⁹⁹Zr+3n +185 MeV - 6. Beta-delayed n emission: ${}^{87}\text{Br}(\beta^{-}){}^{87}\text{Kr}^* \rightarrow {}^{86}\text{Kr+n} + 1.3 \text{ MeV}$ - 7. Spallation: ²⁰⁸Pb(p,3p 20n)¹⁸⁵Au -173 MeV # Mass yields of fission fragments # Understanding fission yields of ²³⁶U T. Ichikawa et al. PRC 86, 024610 (2012) #### A nuclear chain reaction # A single-pulse neutron source Uncontrolled chain reaction of fast-neutron induced fission \approx 25 kg of 93% 235 U # Energy dependence of cross-section ## Bohr's compound nucleus model #### Two separable steps: - 1. Incident particle merges with target to form a compound nucleus. Intermediate state lives "long" (fs as) \Rightarrow thermal equilibrium - 2. The compound nucleus deexcites by emitting gammas or particles. The mode of decay (2.) is independent from the way the compound nucleus was initially formed (1.). ## Resonance reactions Enhanced cross-section (resonance) when energy matches excited state in compound nucleus. # ²³⁵U(n,f) cross-section as function of energy # Prompt neutron kinetics Prompt neutron lifetime τ_p is the average time between the birth of prompt fission neutrons and their final absorption. #### **Assumptions**: - -No delayed neutrons - -Infinite reactor, multiplication factor k_∞= k | time | N(t) | |-------------|------------------| | 0 | n | | τ_{p} | kn | | $2\tau_{p}$ | k ² n | | $3\tau_{p}$ | k ³ n | | | | $$\frac{dn}{dt} = \frac{k-1}{\tau_p} n \Rightarrow n(t) = n(0)e^{\frac{(k-1)}{\tau_p}t}$$ Time constant $$T = \frac{\tau_p}{k - 1}$$ Exponential decrease (k<1) or exponential growth (k>1) cf. demographic projections for Germany Fertility: 1.5 child/women -> k=0.75 T=25 years / (1-0.75) =100 years # Prompt neutron kinetics $\tau_p = \tau_s + \tau_d =$ slowing down time + diffusion time In thermal reactors: $$\tau_s << \tau_d$$, i.e. $\tau_p \cong \tau_d$ $$\tau_d \cong \lambda_a / v \cong 10 \text{ cm / (2000m/s)}$$ $$\tau_p \cong \tau_d \cong 50 \text{ } \mu\text{sec}$$ Example: step of reactivity from k=1.000 to k=1.001 $$T = \frac{\tau_p}{k-1} = \frac{50.10^{-6}}{10^{-3}} = 0.05 \text{sec}$$ $$n(t) = n_0 e^{\frac{t}{0.05}}$$ $$\frac{n(1 \text{sec})}{n_0} = e^{20} = 5E8$$ #### "Prompt" control is not possible! # Chernobyl: a criticality accident # An interesting equation $$n(t) = n(0) \exp((k-1)/\tau_{cycle} t)$$ $$T_2 = \ln(2) \, \tau_{\text{cycle}} / \left(k-1 \right)$$ $k = R_0$ basic reproduction number $\tau_{cycle} \approx$ incubation period $$k<1: T_{1/2} = ln(2) \tau_{cycle} / (k-1)$$ $$\tau_{\text{cycle}} = 7 \text{ d}$$; $k = 0.8 \Rightarrow T_{1/2} = 3.5 \text{ weeks}$ $$\tau_{\text{cycle}} = 7 \text{ d}; \text{ k} = 0.9 \implies T_{1/2} = 7 \text{ weeks}$$ $$\tau_{cycle} = 7 \text{ d}; \text{ k} = 0.99 \Rightarrow T_{1/2} = 70 \text{ weeks}$$ The greatest shortcoming of the human race is our inability to understand the exponential function. [Prof. Al Bartlett] "Just stay calm. It will go away." "Everything passes and this will pass." "I continue to shake hands." "Brazilians never catch anything." # Delayed neutron emission from fission products | | Possible precursors | |------|---| | 87E | Br | | 88E | Br, ¹³⁷ I, ¹³⁶ Te, ¹³⁴ Sb, ¹⁴¹ Cs | | 89E | Br, ¹³⁸ I, ^{92,93} Rb, ¹⁴⁷ La, ⁸⁷ Se, ⁸⁴ As | | 85 A | as, ⁹⁰ Br, ¹³⁵ Sb, ⁹⁴ Rb, ¹³⁹ I, ^{98,99} Y, ¹⁴² Cs, ⁸⁰ Ga | | | ⁷ As, ¹³⁶ Sb, ^{147,148} Ba, ^{81,82} Ga, ^{140,141} I, ⁹¹ Br, Sn, ¹⁴⁵ Cs, ⁸⁹ Se | | 830 | Ga, 146,147Cs, 95,96,97,98,99Rb, 92Br, 91Se | β= percentage of delayed neutrons # β ν ν_p ν_d Ther 0.0067 2.490 2.473 0.01668 #### average emission time $$\tau_{delayed} = \frac{1}{\beta} \sum_{i} \beta_{i} \tau_{i} \approx 12 \operatorname{sec}$$ # Neutron lifetime, taking into account delayed neutrons $$\begin{aligned} k &= k_{prompt} + k_{delayed} = 1 = (1 - \beta) + \beta \\ \tau &= (1 - \beta)\tau_p + \beta(\tau_{delayed} + \tau_p) \approx \beta\tau_{delayed} = 0.08 \sec \theta \end{aligned}$$ Now for step from k=1.000 to k=1.001 $$T=\beta \tau_{delaved}/(k-1)=80$$ seconds # Reactor response to a step of reactivity neutron numbers are given for a typical PWR reactor **Research reactor** # Components of a nuclear reactor - 1. Fuel - 2. Moderator - 3. Control rods - 4. Coolant - 5. Pressure vessel - 6. Containment - 7. Steam generator (for power plants) or experimental facilities (for research reactors) #### Moderator elastic collisions with light atoms (mass A): average energy loss E_{n+1} - $E_n = 2 E_n A/(A+1)^2$ $$ln(E_n) - ln(E_{n+1}) = \xi = 1 - (A-1)^2/(2A) * ln[(A+1)/(A-1)]$$ $$\Sigma = n \sigma = m/M \sigma$$ | Moderating power: | $\xi \Sigma_{scatter}$ | | |--|------------------------|--| | Moderating ratio: | | $\xi \Sigma_{\text{scatter}} / \Sigma_{\text{abs.}}$ | | Light water (H ₂ O) | 1.28 | 58 | | Heavy water (D ₂ O) | 0.18 | 21000 | | Beryllium (Be) | 0.16 | 130 | | Graphite (C) | 0.064 | 200 | | Polyethylene (CH ₂) _x | 3.26 | 122 | | | | | #### Q4: The moderator of the first nuclear reactor #### Choice of coolant - coolant = moderator - ⇒ passive regulation - ⇒ intrinsic safety # RBMK: graphite moderator water cooling ⇒ positive void coefficient! # RHF fuel element 8 December 1987: Intermediate-Range Nuclear Forces Treaty 1 warhead = 25 kg HEU = 3 fuel elements for ILL The ILL reactor contributes to permanent disarmament! #### The reactor core and vessel # Spectral shaping with dedicated moderators # Spectral shaping with dedicated moderators #### Power reactor - heat used to produce electricity - neutrons just to maintain chain reaction - needs high power, high temperature and high pressure for good thermal efficiency - BWR: 75 bar, 285°C - PWR: 155 bar, 315°C - 25 cm thick steel pressure vessel ⇒ defines lifetime (40..60 y) #### Research reactor - neutrons used for applications - heat not used - operates at lower power, low temperature (ILL 30-48°C) and low pressure (<14 bar) - vessel and all inserts made from pure Al-alloy - modular and exchangeable ⇒ no finite lifetime # ILL: Replacement of the reactor vessel 1990-94